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Domain decomposition refers to divide and conquer techniques for solving
partial differential equations by iteratively solving subproblems defined on
smaller subdomains. The principal advantages include enhancement of par-
allelism and localized treatment of complex and irregular geometries, sin-
gularities and anomalous regions. Additionally, domain decomposition can
sometimes reduce the computational complexity of the underlying solution
method.

In this article, we survey iterative domain decomposition techniques that
have been developed in recent years for solving several kinds of partial dif-
ferential equations, including elliptic, parabolic, and differential systems such
as the Stokes problem and mixed formulations of elliptic problems. We fo-
cus on describing the salient features of the algorithms and describe them
using easy to understand matrix notation. In the case of elliptic problems, we
also provide an introduction to the convergence theory, which requires some
knowledge of finite element spaces and elementary functional analysis.
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1. Introduction

Domain decomposition (DD) methods are techniques for solving partial dif-
ferential equations based on a decomposition of the spatial domain of the
problem into several subdomains. Such reformulations are usually motivated
by the need to create solvers which are easily parallelized on coarse grain
parallel computers, though sometimes they can also reduce the complexity
of solvers on sequential computers. These techniques can often be applied
directly to the partial differential equations, but they are of most interest
when applied to discretizations of the differential equations (either by fi-
nite difference, finite element, spectral or spectral element methods). The
primary technique consists of solving subproblems on various subdomains,
while enforcing suitable continuity requirements between adjacent subprob-
lems, till the local solutions converge (within a specified accuracy) to the
true solution.

In this article, we focus on describing iterative domain decomposition
algorithms, particularly on the formulation of preconditioners for solution
by conjugate gradient type methods. Though many fast direct domain de-
composition solvers have been developed in the engineering literature, see
Kron (1953) and Przemieniecki (1963) (these are often called substructur-
ing or tearing methods), the more recent developments have been based
on the iterative approach, which is potentially more efficient in both time
and storage. The earliest known iterative domain decomposition technique
was proposed in the pioneering work of H. A. Schwarz in 1870 to prove the
existence of harmonic functions on irregular regions which are the union of
overlapping subregions. Variants of Schwarz’s method were later studied by
Sobolev (1936), Morgenstern (1956) and Babugka (1957). See also Courant
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and Hilbert (1962). The recent interest in domain decomposition was initi-
ated in studies by Dinh, Glowinski and Périaux (1984), Dryja (1984), Golub
and Mayers (1984), Bramble, Pasciak and Schatz (1986b), Bjgrstad and
Widlund (1986), Lions (1988), Agoshkov and Lebedev (1985) and Marchuk,
Kuznetsov and Matsokin (1986), where the primary motivation was the in-
herent parallelism of these methods. There are not many general references
that provide an overview of the field, but here are a few: discussions in
Keyes and Gropp (1987), Canuto, Hussaini, Quarteroni and Zang (1988),
Xu (1992a), Dryja and Widlund (1990), Hackbusch (1993), Le Tallec (1994)
and the books of Lebedev (1986), Kang (1987) and Lu, Shih and Liem
(1992) and the forthcoming book by Smith, Bjgrstad and Gropp (1994). The
best source of references remains the collection of conference proceedings:
Glowinski, Golub, Meurant and Périaux (1988), Chan, Glowinski, Périaux
and Widlund (1989, 1990), Glowinski, Kuznetsov, Meurant, Périaux and
Widlund (1991), Chan, Keyes, Meurant, Scroggs and Voigt (1992a), Quar-
teroni (1993).

This article is conceptually organized in three parts. The first part (Sec-
tions 1 through 5) deals with second-order self-adjoint elliptic problems.
The algorithms and theory are most mature for this class of problem and
the topics here are treated in more depth than in the rest of the article. Most
domain decomposition methods can be classified as either an overlapping or
a nonoverlapping subdomain approach, which we shall discuss in Sections 2
and 3 respectively. A basic theoretical framework for studying the conver-
gence rates will be summarized in Section 4. Some practical implementation
issues will be discussed in Section 5. The second part (Sections 6-8) consid-
ers algorithms that are not, strictly speaking, domain decomposition meth-
ods, but that can be studied by the general framework set up in the first
part. The key idea here is to extend the concept of the subdomains to that
of subspaces. The topics include multilevel preconditioners (Section 6), lo-
cally refined grids (Section 7) and fictitious domain methods (Section 8). In
the last part (Sections 9-12), we consider domain decomposition methods
for more general problems, including convection—diffusion problems (Sec-
tion 9), parabolic problems (Section 10), mixed finite element methods and
the Stokes problems (Section 11). In Section 12, we provide references to
algorithms for the biharmonic problem, spectral element methods, indefinite
problems and nonconforming finite element methods. Due to space limita-
tion, and the fact that both the theory and algorithms are generally less well
developed for these problems, we do not treat Parts II and III in as much
depth as in Part I. Our aim is instead to highlight some of the key ideas,
using the framework and terminology developed in Part I, and to provide a
guide to the vast developing literature.

We present the methods in algorithmic form, expressed in matrix notation,
in the hope of making the article accessible to a broad spectrum of readers.
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Given the space limitation, most of the theorems (especially those in Parts
IT and III) are stated without proofs, with pointers to the literature given
instead. We also do not cover nonlinear problems or specific applications
(e.g. CFD) of domain decomposition algorithms.

In the rest of this section, we introduce the main features of domain de-
composition procedures by describing several algorithms based on the sim-
pler case of two subdomain decomposition for solving the following general
second-order self-adjoint, coercive elliptic problem:

Lu= -V (a(z,y)Vu) = f(z,y), inQ, u=0 ondQ. (1.1)

We are particularly interested in the solution of its discretization (by either
finite elements or finite differences) which yields a large sparse symmetric
positive definite linear system:

Au= f. (1.2)

1.1. Overlapping subdomain approach

Overlapping domain decomposition algorithms are based on a decomposition
of the domain €2 into a number of overlapping subregions. Here, we consider
the case of two overlapping subregions {{;,;} which form a covering of Q;
see Figure 1. We shall let [';,7 = 1,2 denote the part of the boundary of ;
which is in the interior of Q.

The basic Schwarz alternating algorithm to solve (1.1) starts with any
suitable initial guess u® and constructs a sequence of improved approxima-
tions u}, u? . Starting with the kth iterate u*, we solve the following
two subproblems on € and O, successively with the most current values as
boundary condition on the artificial interior boundaries:

Lu’lC+1 = f, on €,
uzii = ¥, on Flj
uy = 0, on 9 \I'y,
and
Luktl = f on €y,
:”: = 1/1H'1|1~2 on sz
Uy = 0, on 9\Iy.

The iterate u**1 is then defined by
ukH . A
k+1 _ (z,y) if (z,y) €
vy { @) i (2,9) € D,

It can be shown that in the norm induced by the operator L, the iterates
{u*} converge geometrically to the true solution u on €, i.e.

llu —u*|l < ¥ llu =,
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Fig. 1. Two subdomain decompositions.

where p < 1 depends on the choice of {1 and Q.

The above Schwarz procedure extends almost verbatim to discretizations
of (1.1). We shall describe the discrete algorithm in matrix notation. Cor-
responding to the subregions {Ql, Qz} let {Il, 12} denote the indices of the
nodes in the interior of domain € and interior of {2y respectively. Thus I
and I form an overlapping set of indices for the unknown vector u. Let 7y
be the number of indices in 11, and let 7y be the number of indices in Is.
Due to overlap, 7i; + 7.3 > n, where n is the number of unknowns in €.

Corresponding to each region i, we define a rectangular n X 7; extension
matrix RY whose action extends by zero a vector of nodal values in Q.
Thus, given a subvector z; of length 7; with nodal values at the interior
nodes on ; we define:

; for k € I
RT 3 = (xl)k 1 . . )
(R o {0 for k € I — I;, where I = I, U I,.

The entries of the matrix R7 are ones or zeros. The transpose R; of this
extension map RY is a restriction matrix whose action restricts a full vector
z of length n to a vector of size #; by choosing the entries with indices
I; corresponding to the interior nodes in €2;. Thus, R;x is the subvector
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of nodal values of x in the interior of Qi. The local subdomain matrices
(corresponding to the discretization on ;) are, therefore,

Ay = RyART, Ay = R,ART,

and these are principal submatrices of A.
The discrete version of the Schwarz alternating method, described earlier,
to solve Au = f, starts with any suitable initial guess u® and generates a

sequence of iterates u%, u!,... as follows
uk 12 = %+ RTATIR)(f — Aub), (1.3)
uktl = o F Y2 RTATIR,(f — Aubt/?). (1.4)

Note that this corresponds to a generalization of the block Gauss—Seidel
iteration (with overlapping blocks) for solving (1.1). At each iteration, two
subdomain solvers are required (4;* and A;'). Defining

P,=RTA7'RA, i=1,2,

the convergence is governed by the iteration matrix (I — P;)(I — P;), hence
this is often called a multiplicative Schwarz iteration. With sufficient overlap,
it can be proved that the above algorithm converges with a rate independent
of the mesh size h (unlike the classical block Gauss-Seidel iteration).

We note that P; and P are symmetric with respect to the A inner product
(see Section 4), but not so for the iteration matrix (I — P)({ — P;). A
symmetrized version can be constructed by iterating one more half-step with
A7! after equation (1.4). The resulting iteration matrix becomes (I—Py)(1—
P,)(I — P;) which is symmetric with respect to the A inner product and
therefore conjugate gradient acceleration can be applied.

An analogous block Jacobi version can also be defined:

uFTY2 =k + RTATIR (f — Aub), (1.5)
uk+1 - uk+l/2+RgA2—lR2(f_Auk)_ (16)

This version is more parallelizable because the two subdomain solves can be
carried out concurrently. Note that by eliminating u**1/2, we obtain

w1 = uF £ (RTAT'R, + RT ARy (f — Au).

This is simply a Richardson iteration on Au = f with the following additive
Schwarz preconditioner for A:

MZ' = RTAT'R, + RTASR,.
The preconditioned system can be written as
MZI'A=P + P,

which is symmetric with respect to the A inner product and can also be used



DOMAIN DECOMPOSITION SURVEY 67

with conjugate gradient acceleration. Again, for suitably chosen overlap (see
Section 1), the condition number of the preconditioned system is bounded
independently of & (unlike classical block Jacobi).

1.2. Nonoverlapping subdomain approach

Nonoverlapping domain decomposition algorithms are based on a partition
of the domain € into various nonoverlapping subregions. Here, we consider
a model partition of  into two nonoverlapping subregions € and 9, see
Figure 1, with interface B = 0 NN (separating the two regions). Let u =
(u1,ug2,up) denote the solution u restricted to ©;, Q3 and B respectively.
Then, u;, uy satisfy the following local problems:

Lu1 = f in Ql LU2 = f in Qz
ug = 0 on 9 \B and up = 0 on OQ\B  (1.7)
u; = ug onB Uy = ugp onB

as well as the following transmission boundary condition on the continuity
of the flux across B:

ny - (aVuy) = —ng - (aVuy) on B,

where each m; is the outward pointing normal vector to B from Q;. (We
omit derivation of the above, but note that it can be obtained by applying
integration by parts to the weak form of the problem.) Thus, if the value
up of the solution » on B is known, the local solutions u; and us can be
obtained at the cost of solving two subproblems on 2; and 2, in parallel.

The main task in nonoverlapping domain decomposition is to determine
the interface data upg. To this end, an equation satisfied by up can be
obtained by using the transmission boundary conditions. Let g denote ar-
bitrary Dirichlet boundary data on B. Define E1g and E,g as solutions of
the following local problems, on £; and €9 respectively:

{ L(Eng) = f in®y { L(Eyg) = f in(
Eig = 0 ondQ\B and Eyg = 0 on0Q\B
Fig = g onB Eg = g onB.
(1.8)
Then, by construction the boundary values of F1g and Ey¢g match on B
(and equal g). However, in general the fluz of the two local solutions will
not match on B, i.e.

ny - (aVE1g) # —ny - (aVEyg) on B,

unless g = up. Define the following affine linear mapping 7" which maps the
boundary data g on B to the jump in the flux across B:

T:9g— ny-(aVE1g) +ns-(aVEsyg).
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Thus, the boundary value ug of the true solution u, satisfies the equation
Tupg = 0. (1.9)

The map T is referred to as a Steklov-Poincaré operator, and is a pseudo-
differential operator (Agoshkov, 1988; Quarteroni and Valli, 1990). A prop-
erty of the map T (or a linear map derived from T since it is affine linear)
is that it is symmetric, and positive definite with respect to the L? inner
product on B. The discrete versions of system (1.9) can therefore be solved
by preconditioned conjugate gradient methods.

We now consider the corresponding algorithm for solving the linear system
Au = f. Based on the partition Q2 = Q, U5 U B, let I = I; UI, U I3 denote
a partition of the indices in the linear system, where I; and I, consists
of the indices of nodes in the interior of ©; and 9, respectively, while I3
consists of the nodes on the interface B. Correspondingly, the unknowns
can be partitioned as u = [ug,u2,u3]T and f = [f1, f2, f3]7, and the linear
system (1.2) takes the following block form:

Ain 0 A Uy h
l: U ] = l: fo :l . (1.10)
u3 f3

0 Ay A

Al Ay As
Here, the blocks A;9 and Ay are zero only under the assumption that the
nodes in ; are not directly coupled to the nodes in £y (except through
nodes on B), and this assumption holds true for finite element and low-

order finite difference discretizations.
As in the continuous case, the problem Au = f can be reduced to an
equivalent system for the unknowns ug3 on the interface B. If u3 is known,
then u; and ug can be determined by using the first two block rows of (1.10):

w = A (fi — Aizus)  and  ug = Ay (f2 — Aszus).

Substituting for u; and ug in the third block row of (1.10), we obtain a
reduced problem for the unknowns ug:

Suz = f3, (1.11)

where S = (Ags — AL AL A1s — AL A7 Ags) and f = fs — AL A i -
A2T3A2_21f2. The matrix S is referred to as the Schur complement of Ass
in A, and the equation Susz — fg = 0 is a discrete approximation of the
Steklov—Poincaré equation Tup = 0, enforcing the transmission boundary

condition. The Schur complement S also plays a key role in the following
block LU factorization of (1.10)

I 0 0 All 0 A13 U1 fl
0 I 0 0 Ay Ao up | =1 fo |, (1.12)
AL AT AL Ay T 0o 0 S u3 f3
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from which (1.11) can also be derived.

Solving (1.11) by direct methods can be expensive since the Schur com-
plement S is dense and, moreover, computing it requires as many solves of
each A;; system as there are nodes on B.

Therefore, it is common practice to solve the Schur complement system
iteratively via preconditioned conjugate gradient methods. Each matrix—
vector multiplication with S involves two subdomain solvers (A7 and A5;')
which can be performed in parallel. It can be shown that the condition
number of S is O(h~1!) (which is better than that of A but can still be large)
and therefore a good preconditioner is needed. Note that an advantage of the
nonoverlapping approach over the overlapping approach is that the iterates
are shorter vectors.

1.8. Main features of domain decomposition algorithms

The two preceding algorithms extend naturally to the case of many subdo-
mains. However, a straightforward extension will not be scalable, i.e. the
convergence rate will deteriorate as the number of subdomains increase.
This is necessarily so because in the above algorithms, the only mechanism
for sharing information is local, i.e. either through the interface or the over-
lapping regions. However, for elliptic problems the domain of dependence
is global (i.e. the Green function is nonzero throughout the domain) and
some way of transmitting global information is needed to make the algo-
rithms scalable. One of the most commonly used mechanisms is to use
coarse spaces, e.g. solving an appropriate problem on a coarser grid. This
will be described in detail later.

In this sense, many of the domain decomposition algorithms can be viewed
as a two-scale procedure, i.e. there is a fine grid with size h on which the
solution is sought and on which the subdomain problems are solved, as well
as a coarse grid with mesh size H which provides the global coupling between
distant subdomains. The goal is to design the appropriate interaction of
these two mechanisms so that the resulting algorithm has a convergence
rate that is as insensitive to h and H as possible. In fact, in the literature
on domain decomposition, a method is called optimal if its convergence rate
is independent of h and H.

In practice, however, an optimal preconditioner does not necessarily pro-
vide the least execution time or minimal computational complexity. To
achieve a computationally efficient algorithm requires paying attention to
other factors, in addition to h and H. First of all, even though the number
of iterations required by an optimal method can be bounded independent of
h and H, one still has to ensure that it is not large. Second, each iteration
step must not cost too much to implement. In addition, it would be desirable
for the convergence rate to be insensitive to the variations in the coefficients
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of the elliptic problem, as well as the aspect ratios of the subdomains. We
shall touch on some of these issues later.

We summarize here the key features of domain decomposition algorithms
that we have introduced in this section, and which we shall study in some
detail in the rest of this article:

1  domain decomposition as preconditioners with conjugate gradient ac-
celeration;

2 overlapping versus nonoverlapping subdomain algorithms;

3  nonoverlapping algorithms involve solving a Schur complement system,
using interface preconditioners;

4  additive versus multiplicative algorithms;

optimal preconditioners require solving a coarse problem,;

6  the goal of achieving a convergence rate and efficiency independent of
h, H, coefficients and geometry.

ot

Notation We use the notation cond (M ~1A4) to denote the condition num-
ber of the preconditioned system M~Y2AM~1/2 where M is symmetric
and positive definite. We call a preconditioner M spectrally equivalent to
A if cond (M~1A) is bounded independently of the mesh sizes h and H,
whichever is appropriate.

2. Overlapping subdomain algorithms

We now describe Schwarz algorithms based on many overlapping subregions
to solve (1.1). We first discuss a commonly used technique for constructing
an overlapping decomposition of Q into p subregions Q... ,Qp. To this
end, let 2,,...,8, denote a nonoverlapping partition of 2. For instance,
each subregion §2; may be chosen as elements from a coarse finite element
triangulation TH of Q of mesh size H. Next, we extend each nonoverlapping
region €; to €2;, consisting of all points in Q2 within a distance of 3H from
2; where 8 ranges from 0 to O(1). See Figure 2 for an illustration of a
two-dimensional rectangular region 2 partitioned into sixteen overlapping
subregions.

Once the extended subdomains €; are defined, we define restriction maps
R;, extension maps RY, and local matrices A; corresponding to each subre-
gion Q; as follows. Let A be n x n and let #; be the number of interior nodes
in {;. For each 1 = 1,...,p, let I; denote the indices of the nodes lying in
the interior of ;. Thus {I1,... ,I } form an overlapping collection of index
sets. For each region €); let R; denote the n x f; restriction matrix (whose
entries consist of 1’s and 0’s) that restricts a vector z of length n to R;x
of length 7;, by choosing the subvector having indices in I (corresponding
to the interior nodes in Qi). The transpose RiT of R; is referred to as an
ertension or interpolation matrix, and it extends subvectors of length 7; on
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Q; to vectors of length n using extension by zero to the rest of . Finally,
we let A; = RiARlT, which is the local stiffness matrix corresponding to the
subdomain Qi. Since R; and Rz-T have entries of 1’s and 0’s, each A; is a
principal submatrix of A.

2.1. Additive Schwarz algorithms

The most straightforward generalization of the two subdomain additive
Schwarz preconditioners described in Section 1 to the many subdomain case
is the following:

4
1= RTA7'R..

as,1 —
i=1
Since the action of each term RiTAi_lR,-z can be computed on separate pro-
cessors, this immediately leads to coarse grain parallelism. The actions of
RT and R; are scatter-gather operations, respectively, and it is not necessary
to store the extension and restriction matrices.

The preconditioner M, is a straightforward generalization of the stan-
dard block Jacobi preconditioner to include overlapping blocks. However,
the algorithm is not scalable because the convergence rate of this precondi-
tioned iteration deteriorates as the number of subdomains p increases (i.e.
as H decreases).

Theorem 1 There exists a positive constant C independent of H and h
(but possibly dependent on the coefficients a) such that:

cond (M.} 4) < CH™? (1+87?).
Proof. See Dryja and Widlund (1992a; 1989b). O

This deterioration in the convergence rate can be removed at a small
cost by introducing a mechanism for global communication of information.
There are several possible techniques for this, and here we will describe the
most commonly used mechanism which is suitable only when the fine grid
7h is a refinement of the coarse mesh 7. Accordingly, let RE denote the
standard interpolation map of coarse grid functions to fine grid functions (as
in two-level multigrid methods). In the finite element context, R:'}} simply
interpolates the nodal values from the coarse grid vertices to all the vertices
on the fine grid, say by piecewise linear interpolation. Its transpose Ry is
thus a weighted restriction map. If there are n. coarse grid interior vertices,
then R}} will be an n x n. matrix. Indeed, if %,...,%,_are n. column
vectors representing the coarse grid nodal basis functions on the fine grid,
then

Ry = [y, . ]
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Corresponding to the coarse grid triangulation 77 let Ay denote the coarse
grid discretization of the elliptic problem, i.e. Ay = RHARg. Then, the
improved additive Schwarz preconditioner M, 7 is defined by

P p

MZh =RLAF'RE+Y RIAT'R =) RTA['R, (2.1)
i=1 1=0

where we have let Ry = Ry and Ag = Ay. The convergence rate using this

preconditioner is independent of H (for sufficient overlap).

Theorem 2 There exists a positive constant C independent of H, h (but
possibly dependent on the variation in the coefficients a) such that

cond (Mzh4) < C (1+87).

Proof. See Dryja and Widlund (1992a; 1989b), Dryja, Smith and Widlund
(1993) and Theorems 14 and 16 in Section 4. O

2.2. Multiplicative Schwarz algorithms

The multiplicative Schwarz algorithm for many overlapping subregions can
be analogously defined. Starting with an iterate u*, we compute u**! as
follows

WFHGH/ ) — b/ 4 BT ATVR(f — AuMH/BTD) 20,1, p.

Theorem 3 The error ||u — u*|| in the kth iterate of the above multiplica-
tive Schwarz algorithm satisfies

lu = u*|l < p*llu — ),

where p < 1 is independent of h and H, and depends only on 8 and the
coefficients a, and || - || is the A-norm.

Proof. See Bramble, Pasciak, Wang and Xu (1991) and Theorems 15 and
16. O

As for the additive Schwarz algorithm, if the coarse grid correction is
dropped, then the convergence rate of the multiplicative algorithm will de-
teriorate as O(H~2) when H — 0.

The multiplicative algorithm as stated above has less parallelism than
the additive version. However, this can be improved through the technique
of multicolouring, as follows. Each subdomain is identified with a colour
such that subdomains of the same colour are disjoint. The multiplicative
Schwarz algorithm then iterates sequentially through the different colours,
but now all the subdomain systems of the same colour can be solved in
parallel. Typically, only a small number of colours is needed, see Figure 2
for an example. We caution that the convergence rate of the multicoloured
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algorithm can depend on the ordering of the subdomains in the iteration
and the increased parallelism may result in slower convergence (well known
for the classical pointwise Gauss—Seidel method). However, this effect is less
noticeable when a coarse grid solve is used.

The convergence bounds we have stated for both the additive and mul-
tiplicative Schwarz algorithms are valid in both two and three dimensions,
but with possible dependence on the variation in the coefficients a. For
large jumps in the coefficients, the convergence rate can deteriorate, but
with maximum possible deterioration stated below.

Theorem 4 Assume that the coefficients a are constant (or mildly vary-
ing) within each coarse grid element. Then, for the additive Schwarz algo-
rithm in two dimensions,

cond (Ma;,lQA) < C(1+log(H/h)),
and in three dimensions,
cond (ML A) < C(H/R),

where C is independent of the jumps in the coeflicients and the mesh pa-
rameters H and h, but dependent on the overlap parameter .

Proof. See Dryja and Widlund (1987) and Dryja et al. (1993). O

Corresponding results exist for the multiplicative Schwarz algorithms and
the deterioration in the convergence rate can be improved by the use of
alternative coarse spaces, see preceding reference.

For a numerical study of Schwarz methods, see Gropp and Smith (1992).

3. Nonoverlapping subdomain algorithms

As we saw in Section 2, there are two kinds of coupling mechanisms present
in an optimal Schwarz type algorithm based on many overlapping subre-
gions: local coupling between adjacent subdomains provided by the over-
lapped regions, and global coupling between distant subdomains provided
by the coarse grid problem. In the case of nonoverlapping approach, the
Schur complement system represents the coupling between the nodes on the
interface B and in order to obtain optimal convergence rates, a coarse grid
solve is still needed. However, since there is no overlap between neighbouring
subdomains, the local coupling must be provided by some other mechanism.
The most often used method is to use interface preconditioners, i.e. an ef-
fective approximation to the part of the Schur complement matrix S that
corresponds to the unknowns on the interface separating two neighbouring
subdomains. (In two dimensions, the interface is an edge and in three di-
mensions it is a face.) We shall first describe such interface preconditioners
in Section 3.1 in the context of two subdomain decomposition (where it is
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the only preconditioner needed). The case of many subregions is discussed
in Section 3.2.

3.1. Two nonoverlapping subdomains: interface preconditioners

Consider the same setting as in Section 1, with 2 partitioned into two sub-
domains §2; and 2y separated by an interface B. We need a preconditioner
M for the Schur complement § = Az; — AT3A1_11A13 - Ag3A521A23.

(1) Exact eigen-decomposition of S: In some special cases, an exact
eigen-decomposition of S can be derived from which the action of S~! can
be computed efficiently. For example, consider the five-point discretization
of —A on a uniform grid of size h on the rectangular domain = [0,1] x
(0,11 + l5], which is partitioned into two subdomains ; = [0,1] x [0,{;] and
Q9 =[0,1] x [I1,1; + lp] with interface B = {(z,y) :y =14, 0 <z < 1}. We
assume that the grid is n x (m; + 1 4+ my) with l; = (m; + 1)h, for i = 1,2
and h = 1/(n+1). It was shown by Bjgrstad and Widlund (1986) and Chan
(1987) that

S = FAF,
where F' is the orthogonal sine transform matrix:

(F)ij = : Sin< oL ),

n+1 n+1

A is a diagonal matrix with elements given by

1+,ym1+1 1+,Y'_fn2+1
(A)i = (1 T T 1 _7§n2+1 v0i+0i2/4,

where

(X

0'1':4$i1’12 (m) and ’yi:(1+0'i/2—\10'i+0'1-2/4)2.

If my, mg are large enough, then two good approximations to S are:
Mgm = F(E+3%/4)Y?F, and Mp = FX'/?F,

where ¥ = diag(o;). Mp was first used by Dryja (1982) in a more general
setting. The improved preconditioner Mgy was later proposed by Golub
and Mayers (1984).

Note that all the above preconditioners can be solved in O (nlog(n)) op-
erations using the Fast Sine Transform and it is easy to show that they are
spectrally equivalent to S. In theory, this is true for any second-order elliptic
operator. However, these preconditioners can be sensitive to the aspect ra-
tios l; and Iy and the coefficients (in the case of variable coefficients) on the
subdomains. To apply this class of preconditioners to domains more general
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than a rectangle, and to provide some adaptivity to aspect ratios, Chan
and Resasco (1985; 1987) suggested using the exact eigen-decomposition
of a rectangle which approximates the given domain and shares the same
interface. Exact eigen-decompositions have also been derived by Resasco
(1990) for three-dimensional problems and unequal mesh sizes in each sub-
domain, and by Chan and Hou (1991) for five point stencils approximating
general second-order constant coefficient elliptic problems (which provides
some adaptivity to the coefficients).

(2) The Neumann—Dirichlet preconditioner (See Bjgrstad and Wid-
lund (1984), Bjgrstad and Widlund (1986), Bramble et al. (1986b), Marini
and Quarteroni (1989).) To describe this method, it is convenient to first
write S in a form which reflects the contributions from Q; and 23 more
explicitly. In either finite difference or finite element methods, the term Aj;
can be written as

oy = A+ A

where Ag;) corresponds to the contribution to Ass from subdomain Q; (as-
suming the coeflicients are zero on the adjacent subdomain). For instance,
in the case of finite elements, Agg)
on €2;. We can now write

is obtained by integrating the weak form

S = S(l) + S(Z)a
where
5@ = A:(;) ~- ALAG A, i=1,2.

Due to symmetry, SO = S = 1S if the two subdomain problems are
symmetric about the interface. This motivates the use of either () or §(2)
as a preconditioner for S even if the two subdomains are not equal. For
example, a right-preconditioned system using Mnp = S has the form
(SM + sCHsH™ = 1 4 SSM™' It can be shown that the action of
SM™" on a vector v can be obtained by solving a problem on Q; with v as
Neumann boundary condition on the interface and extracting the solution
values (Dirichlet values) on the interface:

~1

_ A 1 A13 0
SOy =(0 I [ ! A } [ ]
[ ] AL, A v

It is proved in Bjgrstad and Widlund (1986) that this preconditioner is
spectrally equivalent to S.

(3) The Neumann—-Neumann preconditioner One may notice a lack of
symmetry in the Neumann—Dirichlet preconditioner in the choice of which
subdomain to solve the Neumann problem on. The Neumann-Neumann
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preconditioner, first proposed by Bourgat, Glowinski, Le Tallec and Vidrascu
(1989), is completely symmetric with respect to the two subdomains. Here
the inverse of the preconditioner is given by

Mgk =1s®O71 4 17

Obviously, the action of MI\}I}I requires solving a Neumann problem on each of
the two subdomains. In addition to the added symmetry, this preconditioner
is also more directly generalizable to the case of many subdomains and to
three dimensions (see Sections 3.6 and 3.9).

(4) Probing preconditioner This purely algebraic technique, first pro-
posed by Chan and Resasco (1985) and later refined in Keyes and Gropp
(1987) and Chan and Mathew (1992), is motivated by the observation that
the entries of the rows (and columns) of the matrix S often decay rapidly
away from the main diagonal. This decay is faster than the decay of the
Green function of the original elliptic operator. The idea in the probing
preconditioner is to efficiently compute a banded approximation to S. Note
that this would be easy if S was known explicitly because we could then
simply take the central diagonals of S. However, recall that we want to
avoid computing S explicitly. The technique used in probing is to find such
an approximation by probing the action of S on a few carefully selected vec-
tors. For example, if S were tridiagonal, then it can be exactly recovered
by its action on the three vectors:

v; =(1,0,0,1,0,0,...)7,
vy =(0,1,0,0,1,0,...)7,
vs =(0,0,1,0,0,1,...)T

through a simple recursion. Since S is not exactly tridiagonal, the tridi-
agonal matrix Mp obtained by probing will not be equal to S, but it is
often a very good preconditioner. Keyes and Gropp (1987) showed that if S
were symmetric, then two probing vectors suffice to compute a symmetric
tridiagonal approximation. For more details, see Chan and Mathew (1992),
where it is proved that the conditioner number of My 1S can be bounded
by O(h~1/2) (hence Mp is not spectrally equivalent to S) but it adapts very
well to the aspect ratios and the coeflicient variations of the subdomains. It
would seem ideal to combine the advantages of the probing technique with
a spectrally equivalent technique but this has proved to be elusive.

(5) Multilevel preconditioners These techniques make use of the multi-
level elliptic preconditioners to be discussed in Section 6 and adapt them to
obtain preconditioners for the Schur complement interface system. We will
not describe these methods in detail, but the main idea is simple to under-
stand. If a change of basis from the standard nodal basis to a hierarchical
nodal basis is used (assuming that the grid has a hierarchical structure),
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then a diagonal scaling often provides an effective preconditioner in the new
basis. It can be shown rather easily that the Schur complement of the ma-
trix A in the hierarchical basis is the same as that obtained by representing
S with respect to the hierarchical basis on the interface B (i.e. by a mul-
tilevel change of basis restricted to the interface). Thus a good multilevel
preconditioner for A automatically leads to a good multilevel preconditioner
for S. The reader is referred to Smith and Widlund (1990) for using the
hierarchical basis method of Yserentant (1986) and Tong, Chan and Kuo
(1991) (see also Xu (1989)) for the multilevel nodal basis method of Bram-
ble, Pasciak and Xu (1990). The resulting methods have optimal or almost
optimal convergence rates.

3.2. Many nonoverlapping subdomains

Many of the preconditioners described in Section 3.1 for two nonoverlapping
subdomains can be extended to the case of many nonoverlapping subregions.
However, in the case of many subregions, these preconditioners need to be
modified to take account of the more complex geometry of the interface, and
to provide global coupling amongst the many subregions.

Let Q be partitioned into p nonoverlapping regions of size O(H) with
interface B separating them, see Figure 3:

Q=QU---UQUB, where ;NQ; =0 for i # j,

the interface B is given by: B = {U!_;0,;} N Q. For i = 1,...,p, let I,
denote the indices corresponding to the nodes in the interior of subdomain
%, and let I = UZ_,I; denote the indices all nodes lying in the interior of
subdomains. To minimize notation, we will use B to denote not only the
interface, but also the indices of the nodes lying on B. Then, corresponding
to the permuted indices {I, B}, the vector u can be partitioned as u =
[ur,up]T, and f = [fr, fB]T, and equation (1.2) can be written in block

form as follows
Ar AIB][UI] [f]]
= . 3.1
[ ATz A uB fB (3.1)

For five-point stencils in two dimensions and seven-point stencils in three
dimensions, Ay; will be block diagonal, since the interior nodes in each
subdomain will be decoupled from the interior nodes in other subdomains:

A 0
AU = blockdiag (A,'i) = . (3.2)
0 APP

As in Section 1, the unknowns u; can be eliminated resulting in a re-
duced system for up (the unknowns on B). We use the following block LU
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] Qs
vertex
(=, yd)
Vi
a vertex subregion Q; 15
an edge | E;;

Fig. 3. A partition of Q into 12 subdomains.

factorization of A:
A:[ A A }: I 0 [An 0 ] I A7lArs
— | AT Ags ATpArl T 0 Sj|o I ’
(3.3)
where the Schur complement matrix S is defined by

S = App — ATg A7} Arp.

Consequently, solving Au = f based on the LU factorization above requires
computing the action of AI’I1 twice, and S~! once.
By eliminating uy, we obtain

SUB = fSa (34)

where fp = fg — A IBA;II fr. The Schur complement S in the case of many
subdomains has similar properties to the two subdomain case. Here we
only note that the condition number of S is approximately O(H~'h~1) in
the case of many subdomains, an improvement over the O(h~2) growth for
A. The rest of this section will be devoted to the description of various
preconditioners M for S in two and three dimensions.

3.3. Two-dimensional case: block Jacobi preconditioner My For S

Here, we describe a block diagonal preconditioner M; which reduces the
condition number of S from O(H1h™1) to O (H‘2 1og2(H/h)) (without
involving global communication of information). A variant of this precon-

ditioner was proposed by Bramble, Pasciak and Schatz (1986a), see also
Widlund (1988), Dryja et al. (1993).
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The preconditioner M; will correspond to an additive Schwarz precondi-
tioner for S corresponding to a partition of the interface B into subregions.
The interface B is partitioned as a union of edges E; for i = 1,...,m, and
vertices V of the subdomains, see Figure 3:

B={E,U---UE,} UV,

where the edges F; = 9§1; N 9Q; form the common boundary of two subdo-
mains (excluding the endpoints). With duplicity of notation, we also denote
by E; the indices of the nodes lying on edge E;, and use V to denote the
indices of the vertices V. Corresponding to this ordering of indices, we

partition up = [ug,,...,uE,,,uy], and obtain a block partition of S:
Se.Er SE\E; '+ SEE. SEV
S£1E2 SE'zE2 t SE2Em SE;V
S = : : RS : :
Sk En SEym, * SEmEm SEav
Stwv  Skw - St Swy

Note that SE,EJ- = 0 if E; and Ej; are not part of the same subdomain.
A block diagonal (Jacobi) preconditioner for S is:

_SElEl 0 0
0 SE2E2 0
M1= . . . .
. SEmEm 0
| 0 0 Svv |

The preconditioner M) can also be described in terms of restriction and
extension maps. For each edge F;, let Rp, denote the pointwise restriction
map from B onto the nodes on F;, and let REI, denote the corresponding
extension map. Similarly, let Ry denote the pointwise restriction map onto
the vertices V, and let R7, denote extension by zero of nodal values on V to
B. Then the block Jacobi preconditioner is defined by

m
Mi'=)" RE.Spls Re, + RUSyyRy.
=1

Since this preconditioner does not involve global coupling between subdo-
mains, its convergence rate deteriorates as H — 0.

Theorem 5 There exists a constant C independent of H and h (but may
depend on the coefficient a), such that

cond (M7!S) < CH™? (1 + log2(H/h)) .
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Proof. See Bramble et al. (1986a), Widlund (1988), Dryja et al. (1993). O

Since the Sg, g;s are not explicitly constructed, computing the action of
SE,»lEi poses a problem (similarly for Sy v ). Fortunately, each Sg g, and Syy
can be replaced by efficient approximations. For example, the block entries
SE,E, can be replaced by any suitable two subdomain interface precondi-
tioner Mg, g, discussed in Section 3.1, for instance:

MEiEi = aEiFA1/2F,

where ag, represents the average of the coefficient a in the two subdomains
adjacent to F;. Alternatively, the action of SE}Ei can be computed exactly,
using

_ - T
Spmem =0 0 I ]AQ;quuEi [0 0 zp |, (35)

where E; = 0Q; N0, and Ag.uq,uE; is the 3 X 3 block partitioned stiffness
matrix corresponding to the region 2; U Q; U E;. Note that this involves
solving a problem on §2; U Qx U E;. The matrix Syyv may be approximated
by the diagonal matrix Ayy (the principal submatrix of A corresponding to
nodes on V).

3.4. Two-dimensional case: the Bramble-Pasciak-Schatz (BPS)
preconditioner My for S

The H~? factor in the condition number of the block Jacobi preconditioner
M can be removed by incorporating some mechanism for global coupling,
such as through a coarse grid problem based on the coarse triangulation
{Q,}. Accordingly, let RY, denote an interpolation map (say piecewise linear
interpolation) from the nodal values on V' (vertices of subdomains) onto all
the nodes on B. Then, Ry can be viewed as the weighted restriction map
from B onto V. Note that the range of RY here is B instead of the whole
domain.

A variant Ms of the preconditioner proposed by Bramble et al. (1986a) is
a simple modification of M;:

m
M;' =3 RL Splp Re, + RGAR Ry, (3.6)
1=1
where Ap is the coarse grid discretization as in Section 2. With the global

communication of information, the rate of convergence of the algorithm
becomes logarithmic in H/h.

Theorem 6 There exists a constant C independent of H, h such that

cond (M;'S) < C (1 +log(H/h))
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In case the coefficients a are constant in each subdomain €2;, then C is also
independent of a.

Proof. See Bramble et al. (1986a), Widlund (1988) and Dryja et al. (1993).
O

As for the preconditioner M; to efficiently implement this algorithm, it is
necessary to replace the subblocks Sg,g, by suitable preconditioners, such
as those described for the two subdomain case in Section 3.1, see also Chan,
Mathew and Shao (1992b).

3.5. Two-dimensional case: verter space preconditioner M3 for S

The logarithmic growth (1 + log(H/h))? in the condition number of the pre-
ceding preconditioner M can be eliminated at additional cost, by modifying
the BPS algorithm to result in the verter space preconditioner proposed by
Smith (1990, 1992).

The basic idea is to include additional overlap between the subblocks used
in the BPS preconditioner Ms. Recall that the Schur complement S is not
block diagonal in the permutation [E1, ..., Ey,, V], since adjacent edges are
coupled, with Sg, g, # 0 whenever edges E; and Ej; are part of the boundary
of the same subdomain ;. This coupling was ignored in the preceding
two preconditioners, and resulted in the logarithmic growth factor in the
condition number. By introducing overlapping subblocks, one can provide
sufficient approximation of this coupling, resulting in optimal convergence
bounds.

Overlap in the decomposition of interface

B={FEiU---UE,} UV,

can be obtained by introducing vertez regions {V.S1,...,VS,} centred about
each vertex in V' (assume there are ¢ subdomain vertices):

BC{E U---UEL}UVU{VSU---V5}.

The vertex regions V' Sy are illustrated in Figure 3, and are defined as the
cross shaped regions centred at each subdomain vertex (a:f , y,f ) containing
segments of length SH of all the edges F; that emanate from it. Such vertex
spaces were used earlier by Nepomnyaschikh (1984; 1986).

Corresponding to this overlapping cover of B, we denote the indices of the
nodes that lie on E; by E;, the indices of the vertices by V', and the indices
of the vertex region V'S; by V.5;. Thus

EyU---UE,UVUVS;---UVS,

form an overlapping collection of indices of all unknowns on B. As with the
restriction and extension maps for the BPS, we let Ry s, denote the restric-
tion of full vectors to subvectors corresponding to the indices in V' S;. Its
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transpose R, 5. denotes the extension by zero of subvectors with indices V'S;
to full vectors. The principal submatrix of S corresponding to the indices
V'S; will be denoted Syg;, = RvgiSRgsi. The vertex space preconditioner
M3 is an additive Schwarz preconditioner defined on this overlapping parti-
tion:

m q
M;' =Y RL.Spls Re, + REAG'Ry + > Ry Sy Rus,. (3.7)
i=1 =1
In general, the matrices Sy, are dense and expensive to compute. How-
ever, sparse approximations can be computed efficiently using the probing
technique or modifications of Dryja’s interface preconditioner by Chan et al.
(1992b). Alternately, using the following approximation:

-1 - Asti Aﬂvsi,VSi - 0
Syszvs, = [0 1] Abys.vs. Avsuvs, ] { s, ] ;
the action of 5‘7391 can be approximated by solving a Dirichlet problem on a
domain Qyg, of diameter 26H which contains V'S; and which is partitioned
into a small number (four for rectangular regions) subregions by the interface
VS..

The convergence rate of the vertex space preconditioned system is optimal
in H and h (but may depend on variations in the coefficients).

Theorem 7 There exists a constant Cy independent of H, h and § such
that

cond (M3'S) < Co(1+871),

where Cy may depend on the variations in a. There also exists a constant
C1 independent of H, h, and the jumps in a (provided a is constant on each
subdomain ;) but can depend on § such that

cond (M;1S) < C1(1 + log(H/R)).
Proof. See Smith (1992), Dryja et al. (1993) and also Section 4. O

Thus, in the presence of large jumps in the coeflicient a, the condition num-
ber bounds for the vertex space algorithm may deteriorate to (1 + log(H/h)),
which is the same growth as for the BPS preconditioner.

3.6. Two-dimensional case: Neumann—-Neumann preconditioner My for S

The Neumann-Neumann preconditioner for S in the case of many subdo-
“mains is a natural extension of the Neumann-Neumann algorithm for the
case of two subregions, described in Section 3.1. This preconditioner was
originally proposed by Bourgat et al. (1989), and extended by De Roeck
(1989), De Roeck and Le Tallec (1991), Le Tallec, De Roeck and Vidrascu
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(1991), Dryja and Widlund (1990; 1993a,b), Mandel (1992) and Mandel and
Brezina (1992). There are several versions of the Neumann-Neumann algo-
rithm, with the differences arising in the choice of a mechanism for global
communication of information. We follow here a version due to Mandel and
Brezina (1992), referred to as the balancing domain decomposition precon-
ditioner.

Neumann—-Neumann refers to the process of solving Neumann problems on
each subdomain €2; during each preconditioning step. For each subdomain
boundary 0§2;, let Raq, denote the pointwise restriction map (matrix) from
nodes on B into nodes on 8Q; N B. Its transpose R}, denotes an extension
by zero of nodal values in 9€2; N B to the rest of B. Corresponding to
subdomain ;, we denote the stiffness matrix of the Neumann problem by

(@) )
o[ 4 4]
Arg  Aps
where Ag’l) is a principal submatrix of A corresponding to the nodes in the
interior of €, A% is a submatrix of A corresponding to the coupling be-
tween nodes in the interior of €2; and the nodes on the interface B restricted

to 09, and Ag)B corresponds to the coupling between the nodes on 0€;

with contributions from €2; (in the finite element case, Ag p is obtained by
integrating the weak form on 2; for all the basis functions corresponding to
the nodes on 9%;).

For each subdomain €;, we let S®) denote the Schur complement with
respect to the nodes on 9€2; N B of the local stiffness matrix AW

i i i ¢!
SO = Ay - A Af) 4D (3.8)

The natural extension of the two subdomain Neumann-Neumann precon-
ditioner is simply Mjy:

p —
M4—1 _ ZRgQiDi (S(i)) ! D;Raq,, (3.9)
=1

where D; is a diagonal weighting matrix. Note that ($())~1y can be com-
puted by a Neumann solve with v as Neumann data (see Section 3.1). This
preconditioner is highly parallelizable, but it has two potential problems:

e  The matrix S is singular for interior subdomains since it corresponds
to a Neumann problem on ;. Accordingly, a compatibility condition
must be satisfied, and additionally, the solution of the singular system
will not be unique.

e  There is no mechanism for global communication of information, and
hence the condition number of the preconditioned system deteriorates
at least as H~2.
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One way to rectify these two defects is the balancing procedure of Man-
del and Brezina (1992). The residual is projected onto a subspace which
automatically satisfies the compatibility conditions for each of the singular
systems (as many as p constraints). Additionally, in a post processing step,
a constant is added to the solution of each local singular system so that the
residual remains in the appropriate subspace. This procedure also provides a
mechanism for global communication of information. We omit the technical
details, and refer the reader to Mandel and Brezina (1992). The singularity
of the local Neumann problems also arises in a related method by Farhat
and Roux (1992) where the interface compatibility conditions are enforced
by a Lagrange multiplier approach.

The modified Neumann-Neumann preconditioner My (with balancing)
satisfies:

Theorem 8 There exists a constant C independent of H and h and the
jumps in the coefficients a such that

cond (M;18) < C(1+ log(H/h))?.

Proof. See De Roeck and Le Tallec (1991), Mandel and Brezina (1992),
Dryja and Widlund (1993a). O

The Neumann—-Neumann preconditioner has several attractive features:

e  the subregions {2, need not be triangular or rectangular; they can have
general shapes;

e no explicit computation of the entries of S;
the rate of convergence is logarithmic in H/h and insensitive to large
jumps in the coefficients a.

However, the Neumann-Neumann preconditioner requires twice as many
subdomain solves per step as a multiplication with S.

3.7. Three-dimensional case: verter space preconditioner My for S

Constructing effective preconditioners for the Schur complement matrix S is
more complicated in three dimensions. These difficulties arise in part from
the increased dimension of the boundaries of three-dimensional regions, and
is also, technically, from a weaker Sobolev inequality in three dimensions.

As in the two-dimensional case, we assume that  is partitioned into p
nonoverlapping subregions with interface B:

Q=0 U---UQUB, where B =(U_,00;)N Q.

For most of the three-dimensional algorithms we will describe, it will be
assumed that the {€;} consist of either tetrahedrons or cubes and form
a coarse triangulation of 2 having mesh size H. The boundary 09Q; of
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each tetrabedron or cube can be further partitioned into faces, edges and
vertices. The faces F;; = interior of 9; N 0§}; are assumed to be open
two-dimensional surfaces. The edges Ey are one-dimensional curves defined
to be the intersection of the boundaries of two faces: E; = 0F;; N 0Fy,
excluding the endpoints. Finally, the vertices V are point sets which are the
endpoints of edges.

As a prelude, we describe two preconditioners M, and My related to
the vertex space preconditioner M;. Corresponding to the partition of B
into faces, edges and subdomain vertices, we permute the unknowns on B
as g = |z, zg,zv]T, where F denote all the nodes on the faces, E corre-
sponds to all the nodes on the edges E, while V denotes all the subdomain
vertices. Thus, the matrix S has the following block form:

Srr SrE Srv
S=| Stg See Sev
Stv Skv Svv

The first preconditioner M;, will be a block diagonal approximation of
the above block partition of S, with the inclusion of a coarse grid model for
global communication of information, see Dryja et al. (1993). Accordingly,
for each of the subregions of B, let Rp:, Rg, and Ry denote the pointwise
restriction map from B onto the nodes on face F;, edge Ej and subdomain
vertices V, respectively. Their transposes correspond to extensions by zero
onto all other nodes on B. The principal submatrices of S corresponding
to the nodes on F;, Ex and V will be denoted by Sr,r,, Sg,g, and Svvy,
respectively. For the coarse grid problem, let RZ denote the interpolation
map from the subdomain vertices V to all nodes on B. Then, its transpose
Ry denotes a weighted restriction map onto the subdomain vertices V. The
coarse grid matrix is then given by Ay = RHARﬂ.

In terms of the restriction and extension maps given above, M, is defined
by

M =% R%iSﬁ}iRFi + > R, SE:EkREk + Ry AZ'Ry.
7 k

We note that the coupling terms Sr,r; and Sg,g; between adjacent faces
and edges have been dropped. For finite element and finite difference dis-
cretizations, the blocks Sg, g, can be shown to be well conditioned (indeed,
for seven-point finite difference approximations on three-dimensional rectan-
gular subdomains, Sg, g, = Ag,E,, since boundary data on the edges do not
influence the solution in the interior of the region). Consequently, Sg, g, may
be effectively replaced by a suitably scaled multiple of the identity matrix
ME;E;:
Se.p; ® Mg, g, = hop,Ig,,

where o, represents the average of the coefficients a in the subdomains ad-
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jacent to edge E;. The action of 51;,-11?1- can be approximated by analogues of
the two-dimensional interface preconditioners from Section 3.1 or by solving
a Dirichlet problem using a principal submatrix of A corresponding to nodes
on a region §lr, partitioned by face F;.

A related preconditioner Mj; can be obtained at a small additional cost.
For this, we note that the principal submatrix Syy of S (corresponding to
the nodes on the subdomain vertices V') can be replaced by a suitably scaled
diagonal matrix Myy:

SVV ~ MVV = hdiag (ka),

where oy« is the average of the coefficients a in the subdomains adjacent to
vertex V.. The preconditioner My, is defined by

— T o—1 -1 T 4—1 T -1
My' =S RLSp%Rr + Y RE Sy g Re, + REAR Ru + RUM | Ry.
7 k

The following are condition number bounds for the two preconditioners given
above.

Theorem 9 The preconditioner Mi, results in condition number of
H
cond (M;'S) < Cro (1+ log(H/h))?,

where C; is independent of H, h and jumps in the coefficients a. The
preconditioner M, results in improved condition number with respect to
mesh parameters:

cond (M;'S) < Cp (1 +log(H/h))?,
where the coefficient Cy may depend on the coefficients a.
Proof. See Dryja et al. (1993). O

We note that for smooth coefficients, My, is preferable to M, with improved
condition number where the factor H/h has been eliminated.

The vertex space preconditioner of Smith (1992) in three dimensions cor-
responds to an additive Schwarz preconditioner for S, based on a suitable
decomposition of the interface B into overlapping subregions and a coarse
grid model. Accordingly, for each edge Ej, let Ej denote an extension con-
sisting of all nodes on adjacent faces Fj; (but not adjacent edges or subdo-
main vertices) within a distance of 3H from E7. Similarly, corresponding to
each subdomain vertex V}, let Vl denote the vertex region consisting of all
nodes in B within a distance of SH from vertex V;. An overlapping partition
of the interface B is then obtained:

B C (U;F;) U (ukEk) u (ulf/,) .

Corresponding to each overlapping subregion of the interface, define the
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pointwise restriction and extension maps as follows. Let R B By, and Rp,

denote the pointwise restriction map from B onto the nodes on E,,V, and F;,
respectively. Their transposes correspond to an extension by zero onto the
rest of the nodes on B. Accordingly, let Sg,F,, SEkEk and SV,V, denote the

principal submatrices of S corresponding to the nodes on Fj, E‘k and V] re-
spectively. As for the preconditioners M, and My, Rg and Ry will denote
the coarse grid interpolation map and weighted restriction map, respectively.
The coarse grid discretization matrix is obtained by Ay = Ry AR%.
The vertex space preconditioner M is defined by
-1 _ T o—1 T o—1p. T o1 pp. T 4-1
M= ZRFiSFiFiRFi + ;REksEk Ry + XI:RVISWRVI + R Ay Ry.
[
(3.10)
As in the two-dimensional case, the action of the inverses S;,lF,, S;L and
1 1 l l

SEIE,: can be approximated without explicit construction of S. These ap-
k
proximations can be obtained by solving linear systems with principal sub-

matrices of A as coefficient matrices, corresponding to subregions Qg , QEk

and {2y, containing Fj, E) and V! respectively, see Dryja et al. (1993), or
by extensions of techniques in Chan et al. (1992b).

The rate of convergence of the vertexr space preconditioner is independent
of H and h, provided (3 is uniformly bounded. However, it may depend on
the variation in the coeflicients a.

Theorem 10 There exists a constant C, independent of H and h, but
depending on the coefficients a such that

cond (M }S) < C(1 + log?(871)).
Proof. See Smith (1990) and Dryja and Widlund (1992b). O

8.8. Three-dimensional case: wirebasket preconditioners for S

Wirebasket algorithms were originally introduced in Bramble, Pasciak and
Schatz (1989) (see also Dryja (1988)), and later modified and generalized by
Smith (1991) and Dryja et al. (1993). These preconditioners for .S involve
computations on a wirebasket region W of B, and have almost optimal
convergence rates with respect to mesh parameters and coefficients a (in
case the coefficients are constant or mildly varying within each subdomain).
The theoretical basis for the wirebasket method is an alternate coarse grid
space based on a wirebasket region, which replaces the standard coarse grid
problem. The interpolation map onto the wirebasket based coarse space
has the favourable theoretical property that its bounds are independent of
the variations in the coefficients and only mildly dependent on the mesh
parameters (unlike the standard interpolation map onto the coarse grid).
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We describe here a parallel wirebasket algorithm due to Smith (1991), see
also Dryja et al. (1993).

The wirebasket preconditioners for S are based on a partition of the in-
terface B = FUW into faces F' and a wirebasket W. As for the vertex space
preconditioner described earlier, F' will denote the collection of all the faces
F;. For each subdomain boundary 9%;, define the ith wirebasket W) to
consist of the union of all the edges and subdomain vertices lying on 9;:

wh= (J B | V.

Ekcani V;CaQ,

The wirebasket of B is defined to be the union of all the subdomain wire-
baskets:

W= wo
i=1

Corresponding to the partition of the nodes B = F U B, the unknowns
can be permuted: g = [zp, xW]T, and the matrix S has the following block
partition:

g = [ Srr SFw }
S%:W SWW -

As for the vertex space algorithm, Rp, will denote the pointwise restriction
map onto nodes on F;. Its transpose RIT,i will denote extension by zero
of nodal values on F; to all the nodes on B. Next, corresponding to the
wirebasket region W, there will be two kinds of restriction (and extension)
maps, namely a pointwise restriction map Ry and a weighted restriction
map Rw. For each 7, the pointwise restriction map Ry, () will restrict nodal
values on B onto nodal values on the ith wirebasket W(). Its transpose
RW() denotes the extension of nodal values on W(® by zero to all nodes
on B. Given a grid function uy on W, the wirebasket interpolation map
ﬁqv;,uw extends the nodal values of uyy on W to the nodes on the faces as
follows. On all the interior nodes on face Fj, the interpolant RWuW is a
constant equal to the average value of uw on the boundary F; of face F;:

P uw nodes € W
wuw = average(uw )|gr; nodes € Fj.

Thus, its transpose Ry will be a weighted restriction, mapping vectors upg
on B into vectors on W as follows:

(kWuB) (up)i + 2 Zd1m BFk

Next, let 2z, denote the vector whose entries are 1’s for all indices on
the ith wirebasket W), For i = 1,...,p, define B®) = p; (1 + log(H/h)) hI
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to be a diagonal matrix of the same size as the number of nodes on w),
with p; = a|q,. Then, the matrix B is defined on the wirebasket W as a sum
of the local matrices B®):

P
B=> Rl ,BYRyw.
i=1
Since B is the sum of several diagonal matrices, it will also be a diagonal
matrix.
The wirebasket preconditioner My of Smith (1991) has the following ad-
ditive form:

m
M;' =" RESpR Rr + Riy My R, (3.11)
=1

where the matrix My w is defined by its quadratic form:

Y4
. T fi
uiy Mywuw = Zf{gm(meuw ~ wizg )T BY (Rywmuw — wizyw) .-
i=1

The terms w;zy ) and the minimization are there to ensure that the local
Schur complement S®) and Mz(l) have the same null space spanned by 2y )
(which in the case of scalar problems is [1,...,1]7, but for systems such as
elasticity, there may be several linearly independent null vectors).
The ease of inversion of My w is of course crucial to the efficiency of the
preconditioner M,. The linear system
Mwwazw = fw,

is equivalent, due to positive definiteness, to the following minimization
problem:

1T T
min gz Mwwaw — w fw,

and by substituting the quadratic form for My w, we obtain

1 T i
w2 > min (Ryy o Tw — wizw) BY (Rywyzw — wizwe) — Ty fw-
i=1

Differentiating with respect to all unknowns in xw and with respect to
w1, ... ,wp, the following equivalent linear system is obtained:

za,(i)B(i) (Rw(i).’EW — wizw(i)) = 0fori=1,...,p,
Brw — Y0 wiRL  BDzyw = fw.

If wy,...,wp are known, then zy can be determined by solving the second
block row (which is a diagonal system):

14
zw = B! (fw + Zw,’RTV;/(i)B(l)ZW(i)> )

=1
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Substituting this into the first block row, we obtain
(Zérva(i)zwu)) wi — 24y BY Ry B! )y wi Ry ()89 2y
= 2l (1)) BY Ry B~ fiy.

Note that this p X p coefficient matrix for wy,...,w, can be computed, and
it can be verified that it will be sparse. The resulting system for wy,...,wp
can be solved using any sparse direct solver.

The convergence rate of this additive wirebasket algorithm of Smith (1991)
is logarithmic in the number of unknowns per subdomain.

Theorem 11 If the coefficients a are mildly varying within each subdo-
main, there exists a constant C' independent of H, h and a such that

cond (M;1S) < C(1 + log(H/h))?.
Proof. See Smith (1991), Dryja et al. (1993). O

For alternate wirebasket algorithms, we refer the reader to Bramble et al.
(1989), Mandel (1989a), Dryja et al. (1993). The latter contains a wirebasket
algorithm with condition number bounded by 1 + log(H/h).

3.9. Three dimensions: Neumann-Neumann preconditioner M3 for S

The Neumann-Neumann preconditioner for S in three dimensions is identi-
cal in form to the two-dimensional Neumann-Neumann preconditioner de-
scribed earlier, and so the algorithm will not be repeated here. We mention
here that an attractive feature of the Neumann—-Neumann algorithm in three
dimensions is that it does not require distinction between various subregions
of the boundary 99; of each subdomain (such as faces, edges, vertices and
wirebaskets). Additionally, the almost optimal convergence rates are also
valid for three-dimensional problems, see De Roeck and Le Tallec (1991),
Dryja and Widlund (1990; 1993a), Mandel and Brezina (1992).

4. Introduction to the convergence theory

In this section, we provide a brief introduction to a theoretical framework
for studying the convergence rates of the Schwarz (overlapping) and Schur
complement (nonoverlapping) based domain decomposition methods dis-
cussed in this article (the Schwarz framework can also be used for analysing
multilevel methods). Since the convergence rates of preconditioned conju-
gate gradient methods depend on the quotient of the extreme eigenvalues
of the preconditioned matrix M~'A (which is assumed to be symmetric,
positive definite in a suitable inner product), this theoretical framework in-
volves techniques for estimating and bounding the extreme eigenvalues of
the resulting preconditioned matrices. Additionally, in case of unaccelerated
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iterations based on matrix splittings, the framework provides a technique for
estimating the spectral radius or norm of the error propagation matrix.

A prominent feature of the Schwarz algorithms that simplifies their con-
vergence analysis is that the preconditioned matrices (or the error propaga-
tion matrices in case of unaccelerated iterations) can be expressed as sums
(or products) of orthogonal projection matrices. The abstract framework de-
scribed here, originated and evolved from convergence studies of the classical
Schwarz alternating algorithm in a variational framework, see Lions (1988),
Sobolev (1936), Babuska (1957) and Morgenstern (1956), with extensions
and applications in the finite element context by Widlund (1988), Dryja
and Widlund (1987; 1989b; 1990; 1993a), Matsokin and Nepomnyaschikh
(1985), Nepomnyaschikh (1986), Bramble et al (1991), Xu (1992a), and
others. Nonvariational theories, in particular ones based on the maximum
principle, have also been used to study domain decomposition methods,
Miller (1965), Tang (1988), Lions (1989), Chan, Hou and Lions (1991a).

4.1. Abstract framework for additive and multiplicative Schwarz algorithms

Recall that the preconditioned system M 1A of the additive Schwarz pre-
conditioner M is defined by

P P
M7'A=Y RTA7'RA=)_P,
i=0 i=0
where P, = RT A7'R;A. (We have, for convenience, denoted the coarse grid
problem REA;IIRH by R Ay 1Ry.) When A is symmetric positive definite,
the matrices P; are orthogonal projection matrices in the A inner product,
since

PP, =Rl (AT'RART) AT'R:A= RT AT RA = P,

and
AP, = ARTA7'R;A = P A

Thus, the extreme eigenvalues of M ~! A can be estimated by finding upper
and lower bounds for the spectra of the sums of the orthogonal projections
P;. We describe the abstract framework for doing this in the following.

Let V be a Hilbert space with inner product a(., .) and let Vg, ..., V, be
subspaces V; C V. (In the matrix case, a(u,v) = uf Av.) Fori =0,...,p,
let P; denote the orthogonal projection from V into V;, i.e.

Pu € V; satisfies a(Pju,v) = a(u,v) Vv € V;.

Let N, denote the minimum number of distinct colours so that the spaces
V1,...,Vp of the same colour are mutually orthogonal in the a(., .) inner
product (note that the subspaces corresponding to disjoint subdomains will
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be mutually orthogonal, for domain decomposition algorithms). Then the
following upper bound holds for the spectra of the additive operator Py +
o+ Py

Theorem 12 Ao (Po+ -+ FPp) < N+ 1.

Proof. Recall that the spectral radius of any matrix A satisfies p(4) < ||A]|,
and for orthogonal matrices the norm ||P;|| < 1. Thus, an upper bound of
p+1 is trivially obtained since the norm of each projection P; is bounded by
1, and the sum of p+1 such projections gives a bound of p+1. The improved
upper bound of N. + 1 is obtained by noting that the sum of projections of
the same colour, equals a projection onto the sum of the subspaces of the
same colour. Consequently, there are only N, projections for the colours,
and projection Py onto the coarse grid. The result thus follows. O

A lower bound for a sum of the projections can be obtained, provided
the spaces V; satisfy the following property with constant Cy that can be
estimated.

Partition property of V; For any u € V, there exists a constant Cy > 1,
such that the partition: uw = ug + -+ + up, where u; € V;, satisfies

p
a(u;, u;) < Coalu,u).
1=0

The lower bound for the sum of the projections can be estimated based
on Cp, in a result described in Lions (1988), see also Dryja and Widlund
(1987; 1989b). Similar ideas were developed earlier by Matsokin and Nepom-
nyaschikh (1985).

Theorem 13 Suppose the subspaces V; for : = 0,..., p, satisfy the parti-
tion property with constant Cy > 1. Then,

Amin (P() +"'+Pp) > 1/C().

Proof. We shall use the Rayleigh quotient characterization:
p
Amin (Po+ -+ P) = run;zg; a(Pu,u)/a(u,u).

For arbitrary v € V, consider

P
a(u,u) = Za(ui,u), where u = ug+ -+ Up.
1=0

Since P; are projections, we obtain that a(u;,u) = a(u;, P;u). Now, applying
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the Schwarz inequality, we obtain

» » P 1/2
> alui,u) =Y a(us, Pu) < (Z a(Ui,uz')) (

1/2
a(Piu, PﬂU) :
i=0 i=0 i=0

[

Il
=}

1

By the partition property, we obtain that

P 1/2
a(u, u)<C’/2 uul/z(ZaPu,Piu)) .
1=0

After cancellation this becomes

P 1/2 P 1/2
a(u,w)'/? < Gy (Za(ﬂu,m) =G"? (ZaPuu> :

1=0 0
where the last equality follows since a(P;u, P;u) = a(P;u,u). Squaring both
sides, the result gives a lower bound for the Rayleigh quotient. O

Combining the upper and lower bounds, we obtain:

Theorem 14 The condition number cond (M ~!A) of the additive Schwarz
preconditioned system is bounded by (N, + 1)Cj.

Next, we estimate the convergence rate of the unaccelerated multiplica-
tive Schwarz method. Analogous to the two subdomain case presented in
Section 1, it can be easily derived that the error e™ = u — u™ satisfies

e =(I~P,) (I~ Pye™
Thus:
lle®l <L = Bp)--- (I = Fo)lllle™ |-

Clearly, (I — Py)--- (I — Pp)|| £ 1 in the norm generated by bilinear form
a(., .), since the (I — P;) are also orthogonal projections with norms bounded
by 1. Moreover, it is strictly less than 1 whenever V = Vy +--- + V.. More
precisely, we have:

Theorem 15 Let V] satisfy the partition property with constant Cy. Then
the error propagation map of the multiplicative Schwarz iteration satisfies

(L =Fp)--(I-Po)| £1-¢/Co <1,
where c is a constant that depends only on N, but independent of p.

Proof. See Bramble et al. (1991). A precise expression for 0 < ¢ < Cp is
also given in Xu (1992a), Wang (1993), Cai and Widlund (1993). O

For the Schwarz algorithms based on the subdomains illustrated in Fig-
ure 2, the number of colours is N, = 4. Analogous subdomain partitions in
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three dimensions yield N, = 8. More generally, for most domain decompo-
sition algorithms, NV, is a fixed number, independent of the number of sub-
domains. (However, for multilevel methods, N, equals the number of levels,
and then the colouring assumption must be replaced by a weaker assump-
tion, see Bramble, Pasciak, Wang and Xu (1991), Xu (1992a), Yserentant
(1986) and Griebel and Oswald (1993).) Thus, the rate of convergence de-
pends critically on the partition constant Cy and this will be estimated for
finite element spaces in the next section.

4.2. A partition lemma for finite element spaces

In this section, following Dryja and Widlund (1987; 1992b) and Bramble et
al. (1991), we describe a technique for estimating the partition constant Cy
for the basic overlapping Schwarz algorithms of Section 2.

Let V*(Q) denote the space of finite element functions defined on a quasi-
uniform triangulation 7#(§2), and let V; = V(Q;) N H}(€2;) denote the finite
element functions in Vh(Q) which vanish outside Qi. Additionally, let V =
VH(Q) denote the space of finite element functions based on the coarse
triangulation 7 (Q) consisting of nonoverlapping elements €, ... , Qp.

We then have the following partition lemma.

Theorem 16 Let a(., .) denote the bilinear form associated with the el-
liptic problem in R? for d < 3. The subspaces V; defined above satisfy that
for any u € V(Q), there exists u; € V; with

p

u= Z and zp:a(ui,ui) <C (1 + B_Q) a(u,u), (4.1)

1=0 =0
where C is a constant independent of H and h, but which depends on the
coefflicients.

Proof. We outline the proof only for the case of continuous piecewise linear
finite element functions. Let ug = Qqup, where Qg is the L? orthogonal
projection onto Vy. Then, by the H' stability of the L? projection, see Xu
(1989) and Bramble and Xu (1991), we have

luol g1 () < Clunlmiy, (4.2)

for some constant C independent of H and h. By using the equivalence
between a(., .) and the H! norm, it follows from (4.2) that

aug, ug) < Calup,up). (4.3)

Let Iy denote the finite element interpolation map onto the coarse space
VH(Q). By using the best approximation property of Qg and applying the
standard finite element interpolation error bound for (us — Iyuy) we obtain

lun = wollz(n) < llun — Imunlir2) < CHlunlmi(q)- (4.4)
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Next, let x1,...,Xxp be a partition of unity, subordinate to the covering
Q1,...,8,, satisfying:

P
0<xi <1, xi €G3 (), with D xi =1, and |Vxiloo < CBT'H.
=1

Note that such a partition of unity exists due to the overlapping cover. We
then define the following partition of up — up:

u; = In (xi (un — wo)), fori=1,...,p, (4.5)

where T}, is the finite element interpolation onto V*(£2). We note that with-
out the interpolation, the terms y; (up — up) will not be in the finite element
space, since the product with x; is not piecewise polynomial. By linearity
of the interpolant I, and the partition of unity, it follows that

uy + -+ up = Up — Up-

We now estimate the partition constant Cj in several steps. To simplify the
notation, C will denote a generic constant below. For each element e € 7",
let 0 < 6, < 1 be a constant such that ||[x; — bellpo(e) = O(h/H) (e.g.
f. = xi(zg) where zg is the centre of the element). Then, in element e we
have

I (xi(un — uo))
In ((xi — 0e)(un — ug)) + I (Be(un — uo))
In ((x: — ee)(uh - uO)) + 0 (up, — ug) ,

since 6. is constant in element e.
By applying the triangle inequality to the gradient of the above expression,
and using that #. < 1, we obtain

‘uilHl(e) = ||Vui||%2(e) < 2||th(Xi—9e)(uh—U0)||2LZ(6)+2”V(Uh—UO)H%Z’(e)-

Uy

[l

I

By applying an inverse inequality (which states that |vy|g1 < Ch™ Y vl 2
for any finite element function v;), and the fact that ||In (fvn)llz2(e) <

| £l zeo(e)llvnll 2(ey for any continuous function f, the first term on the right-
hand side can be bounded by

Ch™2 || Tn(xi — 0e)(un — uo)|F2(e) < CR72NXs = OellT oo (e I (un — wo) [ 2y
Since ||x; = el (ey = O(h/H), this in turn can be bounded by

Ch™%(-—— ’ up — ugl|?
BH llun 0“L2(e)'
Combining the above, we obtain

C
il i) < Wlluh — ug|[Z2(ey + 2lun — uolh (o)
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Summing over all ¢ and noting that only a finite number of «; (bounded by
the minimum number of colors NV;) is nonzero on the element e, we obtain

P C
> luilmie < (Wﬂuh - u0”2L2(e) + 2lup - uO'%{l(e)) Ne.
=1

Summing over all elements e in €2, we obtain

P C
> luil ey < (W”Uh — ug||Z2(q) + Clun — uog{l(ﬂ)) Ne.
=

Applying (4.4) to the first term and the triangle inequality to the second
term on the right, we have

p

Y lwilmiay < CB 2 unlin gy + Cluolboy.

=1
Using the H! stability of Qg in the second term on the right and the equiv-
alence between the H! norm and the a(., .) norm, we obtain

P
Za(ui,ui) <C (1 + 5_2) a(up,up).
=1

Adding (4.3), we obtain (4.1). O

Here, C' is independent of A, H and 8, but may depend on the coefficients,
since we used the equivalence between the a(.,.) norm and the H! norm.
For an improved bound of C (1 + 37!) and for bounds which are valid inde-
pendently of the jumps in the coefficients, we refer the reader to Dryja and
Widlund (1992b).

4.8. Theory for Schur complement based methods

The convergence rate of Schur complement based methods depends on the
spectrum of the preconditioned Schur matrix M ~1S. In this section, we will
describe some techniques for estimating the extreme eigenvalues of some
preconditioned Schur systems (mainly in two dimensions).

First, we prove the following equivalence between S and A. Given a vec-
tor zp on the boundary B (see Section 3 for notation), define the discrete
harmonic extension Exzg = —-Al_flAIBCUB- Then we have the following fun-
damental result:

Lemma 1
A[ExB,:cB]T = [0, SCEB]T;
and
T _ T
.’I:BS.IB - [E.IB,.’L‘B]A[E.I'B,IB] .
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Proof. Direct computation from the block factorization of A. O

Thus, the action of S on zp can be obtained by first computing Fzg,
followed by a matrix product of A with [Exp,zp]T, and restricting the
result to the nodes on the interface B.

This lemma provides a framework for constructing suitable precondition-
ers M for S: if M is a matriz defined for vectors xp, such that the M energy
of zp (i.e. 25 Mz p) approzimates the A energy of the discrete harmonic ex-
tension [Exzp,zg|T, then M can be used as a preconditioner for S, provided
M can be easily inverted.

Theorem 17 (Trace Theorem) There exists a continuous linear map
v : HY(Q) — L?(982) such that yu = u|aq for smooth functions u € C®(Q).
Furthermore

||’YU||H1/2(BQ) < Cllull gy,
for some positive constant C, where H'/2(8Q) is a fractional Sobolev norm.
Proof. See Necas (1967) and Lions and Magenes (1972). O

The map v is often referred to as the trace map. H/2(8Q) is a fractional
index Sobolev space which can be defined by interpolation between H!(9Q)
and H°(0Q) = L?(89Q) (we omit this description; see Lions and Magenes
(1972)).

Using the trace theorem, we can prove the following fundamental property
of harmonic functions.

Lemma 2 Let L be a second-order uniformly elliptic operator and u be
a function defined on any region D, such that Lu = 0 in the interior of
D. Then the H'(D) semi-norm of u on D is equivalent to the H/2(dD)
semi-norm of u on the boundary 9D, i.e. there exist positive constants ¢ and
C such that

Proof. The left inequality follows from the trace theorem. The right in-
equality follows from elliptic regularity for harmonic functions, see Lions
and Magenes (1972), Necas (1967) for a proof. O

The corresponding result also holds for discrete harmonic functions, with
constants ¢ and C independent of mesh size h.

Theorem 18 Ifu, € V(D) is a finite element function defined on a region
D, such that uy is discrete harmonic in D, then there exist constants ¢ and
C, independent of h such that

2
clunlzrzopy < lunlt oy < Clunlfniap):
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Proof. The left inequality follows from the trace theorem (as in the continu-
ous case). The right inequality can be proved by using an extension theorem
for finite element functions (which extends finite element functions defined
on the boundary of a domain into the interior, such that the H! norm of the
extension is bounded in terms of the H/2 norm of the boundary data), with
a constant C independent of the mesh size h. Such an extension theorem
was established by Widlund (1987), Bramble et al. (1986b), and Bjgrstad
and Widlund (1986). O

Thus, if a matrix M is the matrix representation of the bilinear form
given by the H'/2(3D) inner product restricted to the finite element space
VR(OD), then M is spectrally equivalent to S, the Schur complement ob-
tained if B = 9. The matrix M can be obtained by interpolation as
follows.

4.4. Interface preconditioners for two-dimensional problems

Let Kp denote the discretization of —A on edge B, with zero boundary
conditions on the vertices 9B. Additionally, let Mp denote the mass matrix
representing the L?(B) inner product on B. Then, the matrix representation
Jp of the HY/2(B) bilinear form (or more precisely, the Hal*(B) bilinear
form, see Lions and Magenes (1972)) is obtained by matrix interpolation
between Kp and Mpg as follows

1/2
JH? = Mg, Kplyy, = My® <M§1/2KBM§1/2) / My,

see Bjgrstad and Widlund (1986) and Bramble et al. (1986b). Since Mp is

spectrally equivalent to a scaled identity matrix, Jllq/ ? can be replaced by

a scaled version of Kg/ 2, which is precisely Dryja’s preconditioner Mp as
presented in Section 3.1.

Theorem 19 For a two subdomain partition, the condition number of the

preconditioned Schur matrix ng/ ’S is bounded by a constant C indepen-
dent of A.

Proof. By construction, J,13/ ? is the matrix representation of the Hééz(B)

inner product, therefore

2
1

T 41/2
UBJB/ up = “uB”Hoéz(B)’

where we have used up to denote both a finite element function and its

vector representation. By a variant of Theorem 18, “uB”i{””'(B) is spectrally
00

equivalent to
[Fup,up)A[Fup, up]?,
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which in turn is spectrally equivalent to u%SuB by Lemma 1. Therefore

J}B/ 2 is spectrally equivalent to S. O

4.5. Many subdomain nonoverlapping algorithms

The theory for estimating the convergence rates of many subdomain pre-
conditioners for S can often be reduced to estimates based on the Schwarz
algorithms, see Dryja et al. (1993), Dryja and Widlund (1990; 1993a). Here,
we sketch some of the basic ideas by considering the vertex space precondi-
tioner M, of Smith (1992) in two dimensions:

- T o— T - —
M= ZREkSE:EkREk +> RVs.SysysRvs, + RpAG Ry.
k 1

In the following, we will assume that Ay is replaced by Sy = RHSRIT{,
in which case the above preconditioner becomes an additive Schwarz pre-
conditioner for S, based on an overlapping decomposition of the interface

B:
B=LkJ{Ek}u{Lljvsl},

and additionally the use of a coarse solver.
The preconditioned Schur matrix M!S can thus be written as a sum of
projections, orthogonal in the S based inner product:

M;'S=> Pg +)_ Pvs, + Pu,
k i

where
— pT o-1 _ pT o-1
PEk = REk EkEkRE’CS’ PVSI = RV815V51VSIRV515
and

Py = RLS;'RyS.

The condition number can be estimated in terms of a partition property
with constant Cy and the number of colours N..

We now sketch briefly, a technique for reducing this to using a correspond-
ing partition for V() in the a(., .) based norm. First, corresponding to
each subregion of the interface, we define a decomposition of {2 as follows.
Let Qp, be a subdomain of size O(H) containing Ej, and partitioned into
two disjoint regions by FEys (for instance, let Qg be the union of the two
subdomains adjacent to Ey). Similarly, for each vertex region V'S;, let Qy g,
denote a subregion of 2 of size O(H) containing V'S;, and which is par-
titioned into a small number of disjoint subregions by V'S; (for instance,

let Qy g, be a rectangular or quadrilateral patch covering the vertex region
VS,) Then,
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e  Given up defined on B, extend it discrete harmonically into the sub-
domains: [Fup,up]’.

e Next, partition [Eup,up]” (the extension) using the spaces {V*(Qg,)},
{VR(Qys,)} and coarse space V with a partition constant Cy that can
be estimated by the same partition lemma (which was stated earlier).
Thus,

[EuB,uB]T = ug + ZﬂEk + Zﬂvsi,
k 1

with
> a(i, @;) < Coa(Eup, Eup) = CoS(up,up),

where u4; denotes the same partition, suitably re-indexed. The last
equality follows from the equivalence between the S-energy and the
A-energy of discrete harmonic extensions. The constant Cy is bounded
independent of H and h.

° Next, restrict each 4; onto B to obtain a partition for ug on B.

¢  Finally, use the equivalence between the S-energy and the A-energy of
discrete harmonic extensions with the additional fact that the a(., .)
energy of each @, is greater than the a(., .) energy of the discrete har-
monic extension of its values on B.

By combining the results above, the partition constant for the Schur based
algorithm can be estimated, see Dryja et al. (1993) for the details.

4.6. Summary of convergence bounds

In Table 1, we summarize the known condition number bounds for several of
the preconditioners described in Sections 2 and 3. In the last two columns,
we list condition number bounds that are most appropriate (tighter) when
the coeflicients are mildly varying and when the coefficients are discontinu-
ous with possibly large jumps, respectively. C(a) refers to a constant inde-
pendent of H and h but dependent on the coefficients a, while C refers to
a constant independent of H, h and a (provided a is mildly varying in each
subdomain €2;). For the Schwarz and vertex space algorithms, g refers to
the overlap parameter.

5. Some practical implementation issues

The focus of the previous sections were on the development of the basic
components of domain decomposition algorithms (at a certain level of ab-
straction). In order to implement these algorithms efficiently, possibly on
a parallel computer, there are other more practical matters to consider as
well. In this section, we shall briefly touch on several of these issues.
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Table 1. Upper bounds for condition numbers of various algorithms.

Algorithm Eqn Mild Coeff. Disc. Coeff.

2D BPS (36)  C(1+log*( H/h)) C (1+log?(H/h))
2D vertex space (3.7)  C(a) (1+log*(B7Y)) C(B) (1+log(H/R))
3D vertex space (3.10) C(a) (1+log*(B71)) C(B)(H/h)

2D additive Schwarz (2.1) C(a) 21+ﬂ ; C(B) (1+log(H/h))
3D additive Schwarz (2.1) C(a) (148! C(B)(H/h)

3D wirebasket (3.11) 1+log’(H/h)) C (1+log*(H/h))

C
2D Neumann-Neumann (3.9) c (1+log (H/h)) C (1+log’(H/h))
3D Neumann-Neumann (3.9) C (1+log?(H/h)) C (1+log?(H/h))

5.1. Inexact subdomain solvers

Every step of a domain decomposition iteration normally requires the exact
solution of a subdomain problem, and perhaps also a coarse problem. Al-
though this usually costs less than the solution of the original problem on
the whole domain, it can still be quite expensive and it is natural to try
to use a cheaper approximate solver instead. Also, when the iterates are
still far from the true solution, it seems wasteful to solve these subdomain
problems exactly. The issue here is how to incorporate these inexact solvers
properly into the existing framework.

In most of the domain decomposition algorithms we have introduced so
far, the exact solves involving A ! and A;Il can be replaced by inexact solves
fii_ 1 and fi;,l, which can be standard elliptic preconditioners themselves
(e.g. multigrid, ILU, SSOR, etc.). However, in order to rigorously prove
that the conjugate gradient method converges, the inexact solvers A; ! and
A;Il must be fired, linear operators, e.g. they cannot be a few steps of an
adaptive iterative method that depends on the vector being operated on
(e.g. a few steps of the conjugate gradient method). In practice, however,
solving the local problems approximately with a Krylov space method may
work fine.

For the overlapping additive Schwarz methods the modification is straight-
forward. For example, the Inezact Solve Additive Schwarz Preconditioner is
simply:

P
MZ4z=RIA'Ryz+ > RTA7'Riz.
=1

We caution, however, that replacing A4; by A; can potentially lead to diver-
gence in multiplicative Schwarz iteration, unless the spectral radii

p(Ai_lAi) < 2,
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see Bramble et al. (1991), Xu (1992a), Cai and Widlund (1993).

The Schur complement methods require more changes to accommodate
inexact solves. For example, by replacing A;Il by Al}l and Sg;g; by Sg;g; in
the definitions of the Bramble-Pasciak~Schatz preconditioner M; (see (3.6))
and the vertex space preconditioner M3 (see (3.7)), we can easily obtain
relatively ill-conditioned inexact preconditioners M; and M3 for S. The
main difficulty is, however, that the evaluation of the product Szp still
requires exact subdomain solves using Al"ll. One way to get around this is
to use an wnner iteration using fii as a preconditioner for A; in order to
compute the action of AI_II. An alternative is to perform the iteration on
the original system Au = f, and construct a preconditioner A for A from
the block factorization of A in equation (3.3) by replacing the terms Ay and
S by Arr and S, respectively, where S can be either M, or Mj. However,
care must be taken to scale A g and A so that they are as close to Ay and
A; as possible respectively — it is not sufficient that the condition number
of A;,lA g and A7 1 A; be close to unity, because the scaling of the coupling
matrix A;g may be wrong. For more details, the reader is referred to Borgers
(1989), Goovaerts (1989) and Goovaerts, Chan and Piessens (1991).

We note that, when set up properly, the use of inexact solvers does not
compromise on the accuracy of the final converged solution — only the pre-
conditioner is changed, see Gropp and Smith (1992).

5.2. The choice of the coarse grid size H

Another practical matter in implementing a domain decomposition algo-
rithm is to decide how many subdomains to use, i.e. the coarse scale H.
Since most of the domain decomposition algorithms we have described have
convergence rates that are bounded independently (or only slightly depen-
dent on) of H, the theory does not lead to a clear choice. If the fine grid
is obtained as a refinement of a coarse grid, then H is naturally defined.
Moreover, very often the choice of subdomains is dictated by geometric con-
siderations, e.g. if the domain can be naturally decomposed into several sub-
domains with regular geometry on which fast solvers can be used. Finally,
in a parallel setting, it is natural to match the number of subdomains to the
number of processors available. The choice of H must take all these factors
into account and there are no guidelines that will work in all situations.
However, from a purely computational complexity standpoint, it is possi-
ble to make a more rational decision based on minimizing the computational
cost. Given h, it has been observed empirically (Keyes and Gropp, 1989;
Smith, 1990; Gropp and Smith, 1992) that there often exists an optimal
value of H which minimizes the total computational time for solving for
the converged solution. A small H provides a better, but more expensive,
coarse grid approximation, and requires solving more subdomain problems
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Table 2. Complexity of solvers on an n3 grid with coarse grid size ny.
(MIC: modified incomplete Cholesky.)

Basic solver Complexity Optimal ng Complexity of
domain decomposition
solver
using optimal ng

Multigrid O(n?) 1 O(n3)
MIC O(n??) 0.61n7/8 O(n?08)
Nested dissection O(nb) 0.93n2/3 O(n*)
Band-Cholesky o(n") 0.95n7/11 O(n44%)
Solver n® O(n®),a — 00 nl/? O(n*/?)

of smaller size. A large H has the opposite effect. If we make the as-
sumption that the same solver is used for the subdomain problems as well
as for the coarse problems, and that the convergence rate is independent
of H (which is true in practice for most optimal methods), then one can
derive an asymptotically optimal value of H (Chan and Shao, 1993). For
example, on a one-processor architecture, for a model problem on a uniform
d-dimensional grid with mesh size h and a solver with complexity O(m®) on
an m? grid, the optimal choice is

o 1/(a—d)
ont = ha/(?a—d)
H pt (a _ d> ]

and the complexity of the overall domain decomposition solver using Hopt
is O(h=/(22=d)) which can be significantly smaller than O(h~%), the com-
plexity of using the same solver to solve the whole problem without using a
domain decomposition method. For example, in three dimensions (d = 3),
the complexities are summarized in Table 2, where n = 1/h.

In a parallel environment, if we assume that each subdomain solve is per-
formed in parallel on the individual processors, and that the coarse solve is
performed on one of the processors, either sequentially after or in parallel
with the subdomain solves, then it turns out, ignoring communication costs
(whether this is valid depends on the problem size and the particular hard-
ware), the optimal value of H is Hopt = V'h, independent of « and d. The
optimal number of processors is n%/2, and the execution time using Hopy is
O(n/?).

In practice, it may pay to empirically determine a near optimal value of
H if the preconditioner is to be re-used many times. The above asymptotic
results for the model problem can be used as a guide.
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5.3. Partition of the domain

In addition to deciding how many subdomains to use, it is also necessary
to identify them. Very often, the domain €2 is already discretized and the
problem is to decompose the grid itself. This can be viewed as a graph par-
titioning problem. The geometry of the domain can usually provide some
guidance, e.g. subdomains with regular geometry are preferable. In a par-
allel setting, it is also desirable to have connections (i.e. edges) between
neighbouring subdomains to be minimized (which would in turn minimize
the communication cost) and to have the load (e.g. the number of grid
points) in each subdomain balanced. For a structured and quasi-uniformly
refined grid, one can often do this decomposition at a coarse level either
by inspection or by brute force. For unstructured grids, finding the opti-
mal decomposition is an NP-complete problem. There have been several
heuristic approaches proposed, including geometric approaches such as the
recursive coordinate bisection method (Fox, 1988; Berger and Bokhari, 1987)
and the inertia method (Farhat and Lesoinne, 1993); recursive graph based
approaches such as the Kernighan and Lin (1970) exchange method, the
minimum bandwidth method and the spectral partitioning method (Pothen,
Simon and Liou, 1990); and global minimization techniques such as using
simulated annealing (Williams, 1991). These techniques trade off efficiency
with the ability to find good partitions, and it is not clear at this point
which method is the best. Recent surveys can be found in Simon (1991)
and Farhat and Lesoinne (1993).

5.4. Solving the coarse problem in parallel

The most natural way of mapping a domain decomposition algorithm onto
a parallel architecture is to map the subdomains to individual processors.
In this setting, the solution of the coarse problem often presents some diffi-
culties because the data are scattered among all the processors. If not done
carefully, the coarse solve can dominate the execution time of the domain
decomposition method. There are several obvious alternatives:

1 keep the data in place and solve it using a parallel method with data
exchanges at each step;

2 gather the data in one processor, solve there and broadcast the result;

3 gather the data to all processors and solve it on all of them in parallel.

According to Gropp (1992), the last two approaches are often better than the

first and on typical architectures. For parallel implementations of domain
decomposition methods, see Bjgrstad and Skogen (1992) and Smith (1993).
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5.5. To overlap or not to overlap?

There is no definitive answer to this question but here are some guidelines.
First, the overlapping method is generally easier to describe, implement and
understand. It is also easier to achieve an optimal convergence rate and
often more robust. On the other hand, extra work is performed on the over-
lapped regions. Moreover, if the coefficients are discontinuous across the
subdomains, the extended subdomains must necessarily have discontinuous
coeflicients, making their solution more problematic. Recently, Bjgrstad and
Widlund (1989) and Chan and Goovaerts (1992) have shown that there is
a fundamental relationship between the two approaches: the overlapping
method is equivalent to a nonoverlapping method with a specific interface
preconditioner. One can think of the overlapping method implicitly com-
puting the effect of this preconditioner by the extra operations performed
on the overlapping region.

6. Multilevel algorithms

In recent years, much research and interest has been focused on the develop-
ment of multilevel algorithms to solve elliptic problems, that provide alter-
native preconditioners to the standard multigrid method. These multilevel
algorithms include, for instance, the hierarchical basis multigrid method of
Yserentant (1986) and Bank, Dupont and Yserentant (1988), the BPX al-
gorithm of Bramble et al. (1990), the multilevel algorithms of Axelsson and
Vassilevski (1990), and the multilevel additive Schwarz algorithm of Zhang
(1992b) (a similar idea was mentioned in the thesis of Xu (1989) and in
Wang (1991)). Although strictly speaking these algorithms are not domain
decomposition methods, they have similarities with Schwarz type domain
decomposition methods (with inexact solves) where different grid levels and
subspaces play the role of subregions, see for instance Xu (1992a). Addi-
tionally, a convergence theory has been developed that incorporates both
multilevel and domain decomposition methods into a unified framework, see
Xu (1992a) and Dryja and Widlund (1990).

6.1. Background on multilevel discretizations

Consider the Dirichlet boundary value problem for the elliptic problem (1.1)
on §2. In order to obtain a multilevel discretization of this problem, the
domain {2 is first triangulated by a coarse grid 71(Q2) consisting of elements
of diameter h;. By successive refinement of each element, (say by dividing
each element into four pieces in two dimensions, etc) a refined triangulation
72(Q) is obtained with a mesh size of hy = h;/2, and such that each element
of 71(£2) is a union of elements of 72()). This procedure can be repeated
a total of J — 1 times, till the grid size h; = h;/27~! on the finest level
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J provides sufficient accuracy. We therefore have J nested triangulations
H(Q), ..., 77(Q) of Q.

On each grid level ¢, for i = 1,...,J, we define the standard finite element
space V" (Q) C HY(Q) consisting of continuous piecewise linear functions
based on a triangulation 7¢(£2), which vanish on the boundary Q. Note
that

Vi) cvhQ)c.. . cvh(Q).

For ¢ = 1,...,J, we let A" denote the stiffness matrix corresponding to
the discretization of the elliptic problem on the jth level based on the finite
element space V" (Q), and let M" denote the mass matrix corresponding
to the bilinear form generated by the L? inner product.

We now describe several multilevel preconditioners that correspond to
additive Schwarz (additive subspace) preconditioners with suitably defined
restriction maps R;.

6.2. The hierarchical basis multigrid method

The hierarchical basis method of Yserentant (1986) and Bank et al. (1988)
is based on a new multilevel hierarchical basis for the finite element space.
Let I; denote the standard finite element interpolation map:

I : VhI(Q) - Vh(Q),

from the fine grid onto the nodal basis functions on grid level 5. Then, by
telescoping series, we obtain:

Ly=L+(I-L)+--+{;-1;-1).

Each of the terms I; — I;_; represents grid functions on level j which are
zero at the nodes corresponding to the coarser grid level 5 — 1. The range
of these interpolation maps I; — I;_ (i.e. the new nodes on each level) will
correspond to the ‘subdomains’ in a Schwarz (subspace) method.

The hierarchical basis multigrid preconditioner M for A is an additive
subspace (Schwarz) preconditioner of the form:

J
My => RID;'R;,
j=1
with restriction map R; = I; — I;_1, and where the local matrices A; =
RjAR]T are replaced by its diagonal D;, resulting in an inexact solve. See
Bank et al. (1988), Xu (1992a) for details. In two dimensions, cond (M ~!A)
is bounded by O(1+log?(h)), but in three dimensions this bound deteriorates
to O(h™1), see Yserentant (1986) and Ong (1989).
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6.3. The BPX algorithm

The BPX preconditioner of Bramble et al. (1990) can also be viewed as an
additive subspace (Schwarz) preconditioner:

J
M~'=>"RTA'R;,
7j=1
where R]-T denotes the interpolation map from the jth grid level to the
finest grid, and R; corresponds to a weighted restriction. Additionally, the
exact local matrices A; = RjARf can be further approximated by ch?"QI
for second-order uniformly elliptive problems without deterioration in the
convergence rates. The resulting preconditioner is

J
— — Tp2-d
Mgpx =Y _ RIhi“R;.
J=1

The convergence rate of the BPX algorithm is optimal.
Theorem 20 There exists a constant C independent of h; and J such that
cond (MgpyAy) < C.

Proof. The original convergence bound due to Xu (1989) and Bramble et
al. (1990) was J? (J with full elliptic regularity), i.e. deteriorated mildly with
increasing number of levels. A different proof by Zhang (1992b) improved
the bound to J. Bounds by Oswald (1991) are optimal, independent of J.
For alternative proofs, see Griebel (1991) and Bornemann and Yserentant
(1993). O

We note that when implementing the restriction and interpolation maps R;
and Rf respectively, it is easier and more efficient to obtain R;z from R, 12
as in a standard multigrid algorithm.

6.4. Multilevel additive Schwarz algorithm

We note that the above version of the BPX algorithm does not take into
account the variation in the coefficients of the elliptic problems. In this
section, we describe the multilevel additive Schwarz algorithm of Zhang
(1992b; 1991) which generalizes the BPX algorithm by including overlapping
subdomains on each grid level, and which takes coeflicients into account in
the preconditioning.

The multilevel Schwarz algorithm is based on the same J grid levels as
the previous algorithms. However, the elements {ey;} on grid level j are

decomposed into a collection of N; overlapping subdomains Q’fj e ,Q}ﬁj:

Qc(apu--uay),
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where the diameter of each jth level subdomain Q?j is O(h;j_1) (which is
the size of the preceding coarser level). Additionally, it is assumed, that the
size of the overlap between the adjacent subregions on grid level j, is Sh;j_1.
For all the subdomains, on all the grid levels, the following interpolation
maps are defined:
RT,, - V@) N HY (@) — VM (Q),

where RZ;,,J. is the extension map from the nodal values on the interior grid

1

points in Q?j on the jth grid level to the finest grid level J. Its transpose
RQ;.J- is a weighted restriction map onto the interior nodes in subdomain Q?j

on the jth grid level. The local stiffness matrix corresponding to subregion
Q?j on the jth grid level is denoted Ath, where

_ T
A, = Rop ARD

is a principal submatrix of the jth level stiffness matrix Ay, .
The multilevel additive Schwarz preconditioner M ,a¢ is defined by

J Nj
-1 T 4-1
Milz=>3> R A R 2.
j=li=1 ¢ i :

We note that this corresponds to a sum of additive Schwarz preconditioners
on each grid level with suitably chosen subdomain sizes. The convergence
rate of the multilevel additive Schwarz algorithm is described in the following
theorem.

Theorem 21 Suppose that the mesh sizes satisfy: h;/h;—; < cr, where

r < 1, and that the subregions on grid level j satisfy Area(Q?j) ~ hj_1.
Then,

cond (M~L A) < C(r,a),

mlas

where the constant C(r,a) can depend on r and the coefficients a, but is
independent of J and h;.

Proof. See Zhang (1992b; 1991). O
Remarks

e  The preconditioner My,j,s can be obtained as a special case of the BPX
preconditioner by choosing the ‘smoothing’ operator in Xu (1989) to
be the additive Schwarz preconditioner. Conversely, the BPX precon-
ditioner for the discrete Laplacian can be obtained as a special case of
the multilevel additive Schwarz algorithm by choosing each subdomain
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Q?j on the jth grid level to contain only one interior point from the
jth grid level, i.e. with minimal overlap amongst subdomains on each
grid level. In this case, the local matrices Ath = ch‘;_2 (Q ¢ RY) will

be 1 x 1, and correspond to the diagonal entries of the stiffness matrix
on the jth grid level Ay,. Additionally: vaz’l RQ',’J' = R;, the weighted

restriction map onto the jth grid level.
e  We note that using the submatrices Ath on level 7 provides the scal-

ing based on the coefficients and compﬁting (or approximating) them
involves some overhead cost.
e  We may skip a few levels of refinement, and the convergence rate will

depend only on the ratio of the relevant mesh sizes.
e A multiplicative version has been considered in Wang (1991).

7. Algorithms for locally refined grids

In this section we describe domain decomposition algorithms for solving the
linear systems arising from discretizations of elliptic partial differential equa-
tions on composite grids obtained by local refinement on subregions of {2.
The discretizations we consider are based on the use of ‘slave variables’ on
the interface separating the different refined regions, see Bramble, Ewing,
Pasciak and Schatz (1988), McCormick (1989), Widlund (1989a). Our de-
scription will be brief, and our goal is to formulate the problem so that the
same domain decomposition methodology of Schwarz methods can be ap-
plied. Indeed, a composite grid is the union of various ‘subgrids’ on different
subregions, see Figure 4, and these ‘subgrids’ correspond to ‘subdomains’ in
a Schwarz method.

7.1. Discretization of elliptic problems on locally refined grids

Consider the elliptic problem (1.1) on a domain 2, which is triangulated by
a quasi-uniform grid 7%(Q2) of mesh size h. The local refinement procedure
is applied to a sequence of nested subregions: Q, C --- C Q3 C ) = Q.
Starting with a quasi-uniform triangulation 7%1(Q;) with mesh size k1, all
elements from this triangulation lying in Qy are uniformly refined, for in-
stance with mesh size hy = h/2 resulting in the local triangulation 72(€,).
The process is repeated, with successive refinements on each nested subre-
gion, with local triangulations 7% (;) for i = 2,...,p, where h; = h;_1/2,
see Figure 4.

Corresponding to each local grid 7%(Q;) let V*(Q;) C H} (%) denote
the space of continuous, piecewise linear finite element functions vanishing
outside ;. The composite finite space V1:72:P» is defined as the sum of
the local spaces:

Vivheohe = yhiQp) 4 VA2 (Qp) + -+ V().
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Nested subregions. Locally refined mesh.

Q3

Q3
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Fig. 4. Nested subregions with repeated local refinement.

The elliptic problem is discretized using the standard Galerkin procedure
based on the composite finite element space V*1:72:P» resulting in a linear
system

Au = f, (7.1)

see McCormick (1984), Bramble et al. (1988) and Widlund (1989a) for the
details.

Throughout the rest of this section, we will use Q?" to denote 7(Q;),
the ¢th refined grid on €2;, where for i = 1 this corresponds to the initial
triangulation of 2. For ¢ = 1,...,p, we let Rghi denote the interpolation

extension) map from V" (;) to the composite grid VP22 2 and let R_»,
p g QF

denote the corresponding restriction map. The local stiffness matrices are
given by AQ',” = RQ’}.‘ ARghi‘

7.2. The Bramble-Ewing-Pasciak—Schatz (BEPS) algorithm for solving
two-level problems

For the case of just one level of refinement (i.e. p = 2), Bramble et al.
(1988) proposed a preconditioner Mggps for system (7.1) that corresponds
to a symmetrized multiplicative Schwarz preconditioner sweeping over the
grids Qi“ for ¢« = 2,1,2 respectively, with zero initial iterate. The BEPS

preconditioner therefore involves inversion of Agh once and Aon, twice.
1 2
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We refer the reader to Bramble et al. (1988) for the algorithmic details and
the proof of the following convergence theorem.

Theorem 22 There exists a constant C, independent of A1 and hy, such
that

cond (MgppsA) < C.

For a more parallelizable variant of the BEPS preconditioner, see Bramble,
Ewing, Parashkevov and Pasciak (1992).

7.8. The FAC and AFAC algorithms for composite grids

The FAC (Fast Adaptive Composite Grid Method) and AFAC (Asynchronous
Fast Adaptive Composite Grid Method) algorithms (McCormick, 1984; Man-
del and McCormick, 1989; Widlund, 1989b) for solving (7.1) can be viewed
as multilevel generalizations of the BEPS algorithm. The FAC algorithm
corresponds to a multiplicative Schwarz algorithm based on the ‘subprob-
lems’ on the refined grids Q:-“ with matrices AQh,-, restriction and extension

maps R, and R;’;hi respectively, fori = 1,...,p, see McCormick (1989) and

Widlund (1989b) for the algorithmic details and the proof of the following
convergence theorem.

Theorem 23 The convergence factor p of the FAC iteration is indepen-
dent of the mesh sizes h; and the number of levels, p, and depends only on the
ratio max{h;/h;_1} and on the ratio of volumes (or areas) max{|€2;_1|/|%]}.

An additive preconditioner Mpac corresponding to the FAC iteration is

14

1=1
The convergence is not as good as the multiplicative version.

Theorem 24 There exists a constant C, independent of the mesh sizes h;
and the number of levels p, such that

cond (MpioA4) < Cp,
Proof. See Widlund (1989b) and McCormick (1989). O

Part of the reason why Mpac is nonoptimal is that some of the grid points
in the refined regions are redundantly accounted for by all coarser level
terms in the preconditioner. In the AFAC preconditioner (see Mandel and
McCormick (1989), Widlund (1989b)), this redundancy is removed explicitly
and optimal convergence is restored.

We introduce the following additional notation.
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e Fori=2,...,p, we use AQh,._1 to denote the stiffness matrix obtained

by discretizing the elliptic problem based on the triangulation 7i-1(Q;)
on €, i.e. using the space V*i-1(Q;) N H{ ().
e Fori=2,...,p, the following additional extension maps will be used:
R,y s VR (Q)) = VIshahs,
which denotes extension of interior nodal values on the grid 7%-1(Q;)

to the composite grid. Its transpose will be a weighted restriction map
onto the nodes in 7-1(;).

The AFAC preconditioner Mapac is defined by
P
~1 — pT —1 T -1 T -1
Mpppc = RQ’1 AQhRQh + Z; (RQ:H AQ’}{ RQ:H‘ - RQ’_li—l AQ’}.‘_1 RQ’_H‘—1> .
1= ® 1 i 3

Thus, the AFAC preconditioner requires solving two subproblems (with dif-
ferent grid sizes) on each refined subregion ;.

Theorem 25 There exists a constant C, independent of the mesh sizes h;
and the number of levels p, and dependent only on the ratios of the mesh
sizes h;_1/h; and the ratios of the areas (or volumes) of the refined regions,
such that

cond (M pacA) < C.

Proof. See Widlund (1989b), Dryja and Widlund (1989a) and McCormick
(1989). O

8. Domain imbedding or fictitious domain methods

A dual approach to domain decomposition is the domain imbedding or fic-
titious domain method (another name is capacitance matriz method), in
which problems on irregular domains are imbedded into larger problems
on regular domains (such as rectangles or cubes) on which fast solvers are
available, and the solution to the original problem is obtained iteratively
by solving a sequence of problems on the extended domain. We will follow
here the approach of Buzbee, Dorr, George and Golub (1971), Proskurowski
and Widlund (1976), O’Leary and Widlund (1979), Borgers and Widlund
(1990), Proskurowski and Vassilevski (1994). A rich literature on fictitious
domain methods is found in the Soviet literature, and we refer the reader to
Astrakhantsev (1978), Lebedev (1986), Marchuk et al. (1986) and Finogenov
and Kuznetsov (1988), for details and references. Recently, very interesting
alternative approaches based on control theory and optimization have been
proposed for fictitious domain methods, and we refer the reader to Atamian,
Dinh, Glowinski, He and Périaux (1991).
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In this section, we briefly describe two examples of domain imbedding
methods for solving a coercive (positive definite) Helmholtz problem on a
domain ;:

—Au+cu=f, inf€)y, wherec>0

with either Dirichlet boundary conditions © = gp or Neumann boundary
conditions du/dn = gy on 99;. In case ¢ = 0, then the Neumann boundary
data gy must satisfy the standard compatibility conditions with f.

We imbed ©; in a regular domain (for instance a rectangle or cube) £ D
Q; and define 2 = Q — Q;. The interface separating the two subregions
will be denoted by B = 9Q; N 80y (which may equal 9Q;, in case
is completely imbedded in 2). The extended elliptic problem on §2, in the
above case will be the same Helmholtz problem (assuming that c is constant).
We assume that the extended problem on 2 is discretized (by either finite
element or finite difference methods) resulting in the linear system Au = f.
We partition the unknowns as u = [ug, ug, U3]T, where u; and uo corresponds
to the interior nodes in 2; and 29, respectively, while u3 corresponds to the
nodes on the interface B separating the two regions. The extended linear
system then has the following block form:

A 0 Agz uy f1
[ u2}=[f2}, (8.1)
u3 f3

OT Axy Az
Az A2Ts As3

where A;; are the coefficient matrices corresponding to the Dirichlet problem

on §2;, for i = 1,2, etc.

In the following two subsections, we describe imbedding methods for solv-
ing Neumann and Dirichlet problems on ;.

8.1. Preconditioner My for the Neumann problem on Q;

Here we describe a domain imbedding preconditioner for the Neumann prob-
lem on §2;, following the development in Borgers and Widlund (1990). Using
the block ordering in (8.1), the linear system corresponding to the Neumann
problem on € is

Aol w1 ] = Al A ur | o
N " = T (1) - )
3 Ajs Ajg u3 93
where A;%) corresponds to the contribution to Azz from ;. We note that
this matrix may be singular, in case ¢ = 0 for the Helmholtz problem, with
[1,...,1]7 in its null space. In such cases, care must be exercised to ensure

that the conjugate gradient iterates remain orthogonal to the null space.
The action of the inverse Ml\?l of a domain imbedding preconditioner My
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to the above problem is defined by

-1 g1 — I 0 0 -1
My {93]_[0 0 I]A

I 0

0 0 [ 91 ] :

0 I g3

This involves the solution of the extended problem with right-hand sides

91,0 and g3 on 4, and B respectively,
By using the block factorization of A, it can be easily verified that

M — An Anz
N an A 5@ |

where S = Ag? — AT, A5} Agz is the Schur complement of the nodes on

B with respect to the nodes in the domain Q9. Thus, the preconditioner

My is a modification of the Neumann problem, by the addition of the Schur

complement to a diagonal block. The convergence rate is optimal.

Theorem 26 The exists a constant C, independent of h, such that
cond (My'An) < C.
Proof. See Borgers and Widlund (1990). O

Finally, we note that the problem of choosing a grid on € that allows
a fast solver, and whose restriction on 2; allows for suitable discretization
on §; is discussed at length in Borgers and Widlund (1990), where a tri-
angulation algorithm is also described. Additionally, we note that exact
solvers on ! may be replaced by suitable inexact solvers, especially based
on a topologically equivalent grid, without affecting the optimal convergence
rate.

8.2. Capacitance matriz solution of the Dirichlet problem on

Here, we consider the solution of the following linear system corresponding
to the Dirichlet problem on Q;:

Anur = fi.

Unfortunately, a straightforward modification of preconditioner My to the
Dirichlet case, i.e.

1

0 fl y

Mpy'fi=[I 0 0]A47!
0

does not work very well. Indeed, cond (M];lAH) grows as O(h™1), see
Borgers and Widlund (1990). An alternative preconditioner based on the
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Neumann problem for the exterior domain 25 = 2 — €24, is described in the
same article.

The solution procedure we describe for the Dirichlet problem will be based
on a recently proposed capacitance matrix algorithm of Proskurowski and
Vassilevski (1994). The solution of A;;u; = f; will be computed in a few
stages, just as in Schur complement based domain decomposition methods,
and it is based on the following two matrix identities relating the the solution
uy on £ to the extended problem on :

Lemma 3 Let the Schur complement of A be
S = A33 - A{3A1—11A13 - Ag3A;21A23.
Then the following identities hold:

I 00 000
(1) A = [T oo0]a?t|loT o|-]00O0fA?
00 I 00 S
x[1 0 0]",

2) ¢c=st=[0 0 1]a'[0 0o 1] .
Proof. This can be verified directly using the block factorization of A. O
The algorithm is a direct implementation of the first identity.

Capacitance matrix method for solving A, ;u, = f,

1 SolveA[yl, Y2, Y3 ]T=[f1, 0, O]T.
Compute w3 = Sy3 by solving Cws = y3, using a preconditioned conju-
gate gradient method, with a matrix—vector product involving C com-
puted by identity (2) in the lemma above (requiring solves with A).
The inverse of any preconditioner for S (e.g. from Section 3) can be
used as a preconditioner for C.

3 Solve A[ vi, vz, wu3 ]T =[0, 0, ws ]T
4 Set Uy =Yy — V1.
Theorem 27 For preconditioners M for C such that M1 is a spectrally

equivalent preconditioner for S, cond (M ~1C) is bounded independent of
the mesh size h.

Proof. See Proskurowski and Vassilevski (1994). O

We refer the reader to Atamian et al. (1991), and to Proskurowski and
Vassilevski (1992) for domain imbedding algorithms for solving indefinite
and nonsymmetric problems.
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9. Convection—diffusion problems

In this section, we briefly describe some domain decomposition algorithms
for solving the nonsymmetric linear systems arising from the discretization
of convection—diffusion problems such as

—eAu+b-Vut+cu=/f inQ, u=0, on 99, (9.1)

where ¢ > 0 represents viscosity, b is a vector field and ¢g > 0. Though
such problems are elliptic, they pose some difficulties for iterative solution.
In case the diffusion term dominates the convection term, (such as when
|Ibllh/e < 1) most of the domain decomposition algorithms we have de-
scribed, including the Schwarz and Schur methods, can be extended to solve
the nonsymmetric problem, with suitable modifications such as replacing
conjugate gradient methods by GMRES, BiCG, BiCGStab or QMR meth-
ods, see Freund, Golub and Nachtigal (1992). However, the convergence
rates of the standard algorithms deteriorate as ¢ approaches zero, unless a
coarse grid discretization of the original problem is solved exactly on a grid
of size H, where H < Hjy (a constant), see Cai and Widlund (1992, 1993),
Xu (1992b), Xu (1992c), Xu and Cai (1992). This coarse grid condition has
been known in the multigrid literature. Additionally, for small diffusion, the
solution is more strongly coupled along the characteristics of the convection
problem, making the solution procedure sensitive to the ordering of nodes.
Thus, the solution of these nonsymmetric problems by standard algorithms
poses some difficulties when the convection term dominates.

In Sections 9.1 and 9.2, we describe the extension of several many sub-
domain overlapping and nonoverlapping algorithms to the nonsymmetric
case. Following that, in Sections 9.3 and 9.4, we briefly describe alternative
approaches that have been recently proposed by Gastaldi, Quarteroni and
Sacchi-Landriani (1990), Glowinski, Périaux and Terrasson (1990b), and
Ashby, Saylor and Scroggs (1992) based on two subdomain decompositions
that couple elliptic and hyperbolic problems using an asymptotics approach.

Throughout this section, we will assume that problem (9.1) is discretized
by a stable scheme (such as upwind finite differences, streamline diffusion
finite elements or a scheme based on artificial viscosity), resulting in a linear
system:

Le)u = €Au+ Cu = f, (9.2)

where A = AT > 0 is the discretization of the Laplacian, and C corresponds
to the discretization of the convection and the cou term.

9.1. Schwarz algorithms for convection-diffusion problems

As in Section 2, let Q... ,Qp denote an overlapping covering of €, with
corresponding restriction and extension maps R; and R, respectively. The
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coarse grid restriction and extension maps will be denoted by Ry and R},
respectively.

A straightforward extension of the additive Schwarz preconditioner for
L(e) is defined by

P
MZY = Rl (eAn + Cy) 'Ry + Y_ R (eAi + €)' R,
i=1
where eAy + Cy = RHL(e)Rz and €A; + C; = R;L(¢)RY are the coarse
grid and local matrices, respectively. The corresponding linear system can
be solved by any suitable nonsymmetric conjugate gradient like procedure.
In the nonsymmetric case, we also have the following variant:

p
MY = RY (eAy +Cu) 'Ry + Y RT (e4:) ™' R,
i=1
where the local convection—diffusion problems are replaced by more easily
solvable (symmetric, positive definite) diffusion problems. The following
convergence bounds have been established by Cai and Widlund (1993) and
Xu and Cai (1992).

Theorem 28 There exists a maximum coarse grid size Hy(e, h, b, cg) such
that if H < Hy(e, h, b, cg), then the rate of convergence of both the additive
Schwarz preconditioned systems is independent of H < Hy and h.

An explicit form for Hy(e, h, b, cg) has not been derived in the literature (to
the knowledge of the authors), but heuristically, it may depend on € and h

as
€
Hy =~ rnax{——, h} ,
° 6]

and this decreases as ¢ — 0. Consequently, the cost of solving the coarse
grid problem can increase with smaller ¢, and places some limitations on the
convergence rate and efficiency of the algorithms, see Cai, Gropp and Keyes
(1992).

The multiplicative Schwarz method can also be extended to the nonsym-
metric case, analogously. However, to ensure convergence without accelera-
tion, care must be exercised so that if approximation of the local problems
are used, they must be spectrally close to the true local problems. We refer
the reader to Xu (1992b), Cai and Widlund (1993), Xu and Cai (1992) and
Wang (1993) for the details.

9.2. Schur complement based algorithms for convection—diffusion problems

As for the symmetric, positive definite case described in Section 3, we par-
tition the domain §2 into p nonoverlapping subregions €y,...,§2,, with in-
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terface B. The block form of the system becomes:

Ly Lis ur fr }
_ , 9.3
LY, Lpgp up fB (9-3)

where L;r = eAj; + Cyy, etc. The Schur complement system is:
Sup = fp, where S = Lgp — LIgL7} L1, and fg = fg — LIgL;} fr.

The solution procedure is analogous to the symmetric, positive definite case.
Once up is determined, u; is obtained as uy = LI‘I1 (fr — Lipug).

The nonsymmetric Schur complement system can be solved by a pre-
conditioned iterative method (in conjunction with GMRES or suitable algo-
rithms), with any of the preconditioners of Section 3. However, as previously
noted, care must be exercised so that the size of the coarse grid problem is
sufficiently small with H < Hy. For instance, the nonsymmetric BPS pre-
conditioner has the form:

n
MgPl’S = REL]_-IlRH + ZRgiSEilE,-REn

i=1
where the edge problems Sg, g, can be replaced by preconditioners applicable
in the symmetric, positive definite case, or preferably preconditioners that
adapt to the convection term. We refer the reader to Cai and Widlund
(1993), D’Hennezel (1992) and Chan and Keyes (1990) for the details.

For a numerical comparison of both Schwarz and Schur complement al-

gorithms, see Cai et al. (1992).

9.8. Elliptic-hyperbolic approzimation of convection—diffusion problems

Classical asymptotics based studies of singular perturbation problems have
much in common with domain decomposition. Typically, the domain is de-
composed into two regions, one corresponding to a boundary or interior layer
region and referred to as the inner region, where the full viscous problem
is solved, and an outer region, where the inviscid or hyperbolic problem is
solved. The inner and outer solutions are required to satisfy certain com-
patibility conditions on the interface or region of overlap between the two
subregions. In problems where asymptotic expansions may not be tractable,
an alternative is to use numerical approximations in each of the subregions,
and to couple the solutions together using matching conditions. Several
detailed and interesting studies have been conducted in the domain decom-
position framework, and we provide references to some of the literature.
For second-order scalar elliptic convection diffusion problems, Gastaldi et
al. (1990) proposed a mixed elliptic-hyperbolic approximation of the convec-
tion diffusion problem. The domain is partitioned into two nonoverlapping
subregions: g, where the full elliptic problem is solved, and €2y where the
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hyperbolic problem obtained by dropping the viscous term is solved. They
proposed new transmission boundary conditions coupling the two subprob-
lems, obtained by using a vanishing viscosity procedure. Additionally, a
Dirichlet—-Neumann type iterative procedure was proposed that solves the
resulting mixed, elliptic-hyperbolic approximation of the convection diffu-
sion problem. Theoretical and numerical estimates of the approximation
error and convergence rates are provided in Gastaldi et al. (1990) and the
references contained therein. A detailed theory has now been developed by
Quarteroni and Valli (1990) for various heterogeneous approximations, and
studies are being conducted for the compressible Navier-Stokes equations.

An alternative approach based on overlapping subregions was used by
Glowinski et al. (1990b) for coupling the viscous and inviscid compressible
Navier—Stokes equations. The domain is decomposed into two overlapping
subregions corresponding to viscous and inviscid regions, and a least-squares
minimization is applied to a functional of the two solutions on the region of
overlap. The resulting least-squares problem is then solved via a nonlinear
GMRES procedure.

For alternative studies, more closely aligned with classical boundary layer
expansions, we refer the reader to Hedstrom and Howes (1990), Chin, Hed-
strom, McGraw and Howes (1986), Gropp and Keyes (1993), and to Garbey
(1992) and Scroggs (1989), for studies on conservation laws. An interest-
ing domain decomposition method based on an approximate factorization
of the convection—diffusion operator was recently proposed by Nataf and
Rogier (1993).

9.4. Block preconditioners for convection—diffusion problems

In this section, we briefly describe an alternative block matrix preconditioner
(without coarse grid solves) for the nonsymmetric linear system (9.2). This
preconditioner was recently proposed by Ashby et al. (1992), motivated by
matched asymptotic expansions, and is referred to as the physically moti-
vated domain decomposition preconditioner.

We consider a decomposition of €2 into two regions, a hyperbolic region
Q25 and an elliptic region Qg, with an overlap of width equal to one grid size.
Corresponding to this partition, the unknowns can be ordered u = [uy, ug]T,
where u; corresponds to the interior unknowns in the hyperbolic region Qg
and uy corresponds to the interior unknowns in the elliptic region Qg. Note
that due to one grid overlap, there are no ‘boundary unknowns’. The linear
system (9.2) then takes on the block form:

€Al +Cn1 €A12+ Cro ] [ UH ] — [ fu
€Al, + Co1 €Ay +Cop | | ug fe |

Based on the above block partition, the physically motivated domain de-
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composition preconditioner Mpmdq of Ashby et al. (1992) is defined by

Cn 0

. 9.
€AT, + Co1 €Az + Cyo (9-4)

Mpmdd =

It is block lower triangular and inverting it involves inverting the two
diagonal blocks. The motivation for setting the diffusion term to zero in the
(1,1) block is that it then corresponds to a hyperbolic problem on region Qg
(analogous to asymptotic expansions for singular perturbation problems).
For most direction fields b, and for upwind finite difference discretizations,
C11 can be inverted by ‘marching along characteristics’. That is, if the
subregion 2y is suitably chosen, the indices of the nodes in 2y may be
reordered to produce a lower triangular matriz Cp;, which can be easily
solved since it is sparse. The block €Ay9 + Cy9 may be more difficult to
invert, since in the elliptic region the grid may be refined, and the diffusion
term may dominate the convection term. In such cases, it may be suitable
to replace €Ass + Cyy by the symmetric, positive definite matrix eAgq (or
suitable parallelizable preconditioners).

Numerical tests conducted in Chan and Mathew (1993) indicate that on
uniform grids, with suitably chosen elliptic and hyperbolic regions, the con-
vergence rate of the Myn44 preconditioned system improves as € — 0, for
fixed mesh size h. However, for fixed ¢, as h — 0, the convergence rate
deteriorates mildly. It is speculated in Chan and Mathew (1993) that this
deterioration may be due to the approximation of the elliptic term by a
hyperbolic term in Q. However, since in general, the mesh size does not
need refinement on the hyperbolic region Qy, but only in the boundary layer
region g, the above algorithm may be more robust with respect to local
refinement in Qg.

A variant of this method was studied in Chan and Mathew (1993), and
corresponds to a matrix version of the Dirichlet-Neumann preconditioner
for the elliptic-hyperbolic approximation of Gastaldi et al. (1990), and is
based on the use of a Neumann problem on Q. In matrix terms, both
preconditioners correspond to variants of the classical block Gauss—Seidel
preconditioner, i.e. a block lower triangular matrix, whose diagonal blocks
are modified to permit ease of solvability.

10. Parabolic problems

In this section, we briefly describe domain decomposition algorithms for
solving the linear systems obtained by implicit discretization of parabolic
problems. We consider the following model parabolic problem for (z,t) €
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Qx[0,7T):
ug = V-(aVu)+ f, onQx|[0,T],
{ u(z,0) = wup(x), on Q, (10.1)
u(z,t) = 0, on 90 x [0, 7).

To be specific, we consider a discretization by finite differences in space and
backward Euler in time, resulting in

(un+1 _ un)/,’. — _,Aun-f-l 4 fn-{-l’
{ ul = ull,

where A is a symmetric positive definite matrix corresponding to the dis-

cretization of —V - (aVu) and 7 is the time step. At each time step, the

following linear system must be solved:

(I4+7A)u™t = 7+, (10.2)

Similar equations are obtained for Crank—Nicholson in time, and finite ele-
ments in space. The implicit system (10.2) corresponds to a discretization
of the elliptic operator L(7)u = 7u — V - (aVu) and, consequently, most
of the domain decomposition algorithms of Sections 2 and 3 are applicable.
However, there are some crucial differences that make this system easier to
solve: the condition number of I + 74 is bounded by O(rh~?) which can be
relatively smaller than cond (A) if 7 is small (say 7 = O(h) or 7 = O(h?)).
Consequently:

e  The entries of the Green function (I + 7A4)~! can be shown to decay
more rapidly away from the diagonal than the entries of A=!, and so
depending on 7, a coarse grid problem may not be required for global
communication of information.

e It is possible to use just one iteration of the domain decomposition
method and still maintain a stable approximation preserving the local
truncation error.

In Section 10.1, Schwarz algorithms are described for (10.2), with modifi-
cations in the coarse problem. In Sections 10.2 and 10.3, algorithms that
require only one iteration are described.

10.1. Schwarz preconditioners for parabolic problems

We follow here the development due to Lions (1988) and Cai (1991; 1993).
As in Section 2, we decompose §2 into an overlapping covering Q... ,Qp,
with corresponding restriction and extension maps R; and RiT, respectively.
Similarly, Ry and R% will denote the restriction and interpolation maps
corresponding to the coarse grid. The local submatrices will be denoted

Li(r)=L+71A; =R, (I + TA) RT. and the coarse grid problem by Ly (1) =
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Ry (I +7A) RL. We define two additive Schwarz preconditioners for L(r) =
I+7A:

Y4
MLy => RILi(r)"'R;,
=1
and

Y4
M5 =Y RILi(r)"'Ri+ R;Ly(r) 'Ry.

as,2 —

i=1
The following convergence results are proved in Cai (1991).

Theorem 29 If 7 < CH?, then cond (Ma;llL(T)) is bounded by a constant

C; independent of 7, H and h. For larger 7, cond (Ma;lzL(T)) is bounded
by a constant Cs independent of 7, H and h.

Thus, if 7 < CH?, then a preconditioner without a coarse model may be
used effectively. However, if 7 is large, a coarse grid correction term must
be used in order to maintain a constant rate of convergence. Similar results
hold for multiplicative Schwarz methods and for Schur complement based
methods. We refer the reader to Cai (1991) for the details.

10.2. One iteration based approximations: overlapping subdomains

As mentioned before, it is possible to obtain approximate solutions w"t! of
system (10.2) that are accurate to within the local truncation error of the
true numerical solution u™*1:

lw™! — ™Y < O (e),

where O (¢) is the local truncation error, and which can be constructed by
solving only one problem on suitably chosen subdomains. Here, we briefly
describe one such algorithm proposed by Kuznetsov (1991; 1988) and Meu-
rant (1991).

Kuznetsov’s method is based on the observation that the entries in the ith
row of the discrete Green function G(7) (where G(7) = (I + 7A)™!) decays
rapidly as the distance between the nodes {z;} increases, specifically

|Gi;(1)| < ¢, when |z; — z;| > cy/Tlog(e ™). (10.3)

Thus, if the right-hand side of equation (10.2) has support in a subregion
Q;, then the solution will decay rapidly with distance with a rate of decay
given by (10.3).

Accordingly, let Q;,...,£2, denote a partition of {2 into p nonoverlapping
subregions, and let Qi D ; denote an extension of £2; containing all points in
Q within a distance of ¢/7 log(e~!). Thus, ... ,Qp form an overlapping
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covering of 2, as in Schwarz algorithms. To approximately solve
(I+7A)u" T =g,
the right-hand side is first partitioned as
g=g1+ - +gp, wheresupport(g;) C Q.
(Such a partition can be obtained, for instance, analogously to the construc-

tion in the proof of the partition lemma in Theorem 16.) Next, solve the
following problem on each extended subdomain £2;:

LQiui:gi, fori=1,...,p,

where Ly = Rg (I + TA)RSA denotes the principal submatrix of I + 74

corresponding to the interior nodes on {);. The approximate solution w"*!
is defined as

Wt = w4,
The following error bound is proved in Kuznetsov (1988).

Theorem 30 If the extended subdomains have overlap of size

O(V7log(e™ 1)),
the error satisfies
”wn+1 _ un+1“ < O(e)

Thus, for instance, when the time step 7 = h and € = h?, the overlap
should be approximately @(v/klog(h)). Consequently, the extended subdo-
mains must have a minimum overlap of the size prescribed above in order
for the truncation error to be acceptable. This provides a constraint on the
choice of subdomains. The case of convection diffusion problems is discussed
in Kuznetsov (1990).

10.3. Alternative one iteration based approrimations

An alternative algorithm that provides an approximate solution of (10.2) was
proposed by Dryja (1991) and corresponds to a domain decomposed matrix
splitting (fractional step method) involving two nonoverlapping subregions.
The resulting scheme can be shown to be unconditionally stable. Unfortu-
nately, the discretization error of the splitting scheme becomes the square
root of the discretization error of the original scheme, see Dryja (1991) for
the details. It is possible to recover the original discretization error by using
an alternative splitting, see Laevsky (1992; 1993).

Kuznetsov (1988) proposed an explicit-implicit scheme to solve parabolic
problems based on a partition of 2 into nonoverlapping regions. The bound-
ary value of u™*! on the interface B is first computed using an explicit
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method (or even an implicit scheme) in a small neighbourhood of B. Using
these boundary values, Dirichlet problems can be solved on each subdomain
to provide the solution ©™*! on the whole domain Q. This idea is particularly
appealing on grids containing regions of refinement.

Another alternative approach was proposed by Dawson and Du (1991),
Dawson, Du and Dupont (1991), in which the domain is partitioned into
many nonoverlapping subdomains with interface B. Special basis function
are constructed having support in a small ‘tube’ of width O(H) containing
the interface B. In the first step approximate boundary values are computed
on B using these special basis functions (involving some overhead cost).
Finally, using these boundary values, the solution u™*! is determined at the
interior of the subdomains.

11. Mixed finite elements and the Stokes problem

In this section, we briefly describe some domain decomposition methods for
solving the linear systems arising from mixed finite element discretizations
of elliptic problems and discretizations of the steady Stokes equations (see
Girault and Raviart (1986), Brezzi and Fortin (1991) for details on mixed
finite element discretizations). Studies of domain decomposition methods
for mixed finite element discretizations of elliptic problems were initiated by
Glowinski and Wheeler (1988), while studies of domain decomposition for
the Stokes problem were initiated by Lions (1988), Fortin and Aboulaich
(1988), Bramble and Pasciak (1988) and Quarteroni (1989).

The mixed formulation of an elliptic problem: —V - (aVp) = f on 2, with
Neumann boundary conditions n - aVp = g on 952 is given by

Viu = f, in €2, Conservation of mass

{ alu+Vp = 0, in Q, Darcy’s law
n-u = —g, indQ, Flux boundary condition

where the compatibility condition

/fdx+/ gds =0
Q a0

is assumed. The Stokes problem with Dirichlet boundary conditions for the
velocity u is

V-u = 0, in{

{—VAu+Vp = f, in Q,
v = 0, on Q.

In both problems u refers to the velocity and p to the pressure.
After discretization, both these problems result in linear systems of the
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HRA

where u is the discrete velocity unknowns and p is the discrete pressure
unknowns. Note that (11.1) is symmetric but indefinite and cannot be
solved directly by the conjugate gradient method. Such systems are usually
solved by block matrix and optimization based solution procedures. The
square matrix A is symmetric and positive definite for both the Stokes and
mixed case. In particular, A4 is block diagonal in the Stokes case, with
diagonal blocks corresponding to discretization of the Laplacian. In the
mixed elliptic case, A corresponds to a discretization of a~!, the inverse of
the coefficients a of the elliptic problem. The matrix BT is rectangular and
represents a discretization of the gradient, while its transpose B represents
a discretization of the divergence operator. In many applications B has a
null space spanned by [1,...,1]7.

following form:

A BT
B 0

11.1. Methods based on elimination of the velocity

A simple procedure to solve (11.1) is to eliminate v and solve the reduced
system for p:

Sp=-BA'BTp=g—- BA'f,

after which u can be obtained by u = A~!(f — BTp). Note that the Schur
complement S is negative definite and hence a conjugate gradient type
method can be used. Each matrix—-vector product with S can be computed
at the cost of solving a linear system with coefficient matrix A.

For the Stokes problem, it can be shown that S is well conditioned and
requires no preconditioning. However, the matrix A is block diagonal with
diagonal blocks corresponding to the Laplacian, and domain decomposition
preconditioners can be applied to A. We refer the reader to Bramble and
Pasciak (1988) for the details, where the Stokes problem is reformulated as
a positive definite linear system and, additionally, a nonoverlapping domain
decomposition algorithm is described. See Rusten and Winther (1992) and
Rusten (1991) for an interesting algorithm for preconditioning the entire
system without eliminating either u or p.

For the mixed elliptic case, the operator S is not well conditioned, and
the above elimination method is not as attractive, see Wheeler and Gon-
zalez (1984). However, if a dual formulation of the mixed problem is used,
see Arnold and Brezzi (1985), then the resulting Schur complement for the
pressure becomes a nonconforming finite element discretization of the corre-
sponding elliptic problem for the pressure. Efficient domain decomposition
preconditioners have been proposed for such nonconforming discretizations
(corresponding to the Schur complement S in the dual formulation), see
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Cowsar, Mandel and Wheeler (1993), Cowsar (1993), Sarkis (1993) and
Meddahi (1993).

11.2. Methods based on diwergence free velocities

An alternative to algorithms based on elimination of the velocity are those
in which the pressure is implicitly eliminated. These methods are based on
the observation that the pressure corresponds to a Lagrange multiplier in
the following constrained minimization problem:

min %uTAu —uTf, subject to Bu=g,

see Girault and Raviart (1986), Lions (1988), Glowinski and Wheeler (1988)
and Quarteroni (1989). In particular, if the divergence constraint Bu = ¢
can be reduced to Bu = 0, (i.e. the feasible set of velocities corresponds
to a linear subspace of divergence free velocities), then in this subspace the
problem becomes positive definite because

w14 BT
MRV
This positive definiteness provides the basis for applying standard conjugate
gradient methods to determine the minimum velocity solution within the
feasible set of velocities satisfying the divergence constraint.

Based on the space of divergence free velocities, Glowinski and Wheeler
(1988) proposed a nonoverlapping domain decomposition method for mixed
finite element discretizations of elliptic problems. In subsequent articles,
Glowinski, Kinton and Wheeler (1990a) and Cowsar and Wheeler (1991)
proposed improved preconditioners for the corresponding Schur complement
system. Nonoverlapping algorithms for the Stokes problem were proposed
by Bramble and Pasciak (1988) and Quarteroni (1989).

Schwarz alternating algorithms for the Stokes problem were proposed in
Lions (1988) and Fortin and Aboulaich (1988), see also Pahl (1993), and are
based on implicit elimination of the pressure. They were extended to the
case of mixed finite element discretizations of elliptic problems in Mathew
(1989; 1993a) and Ewing and Wang (1991). In the following, we briefly
describe the basic linear algebraic issues for formulating Schwarz algorithms
in the mixed case.

Two issues need to be addressed in order to define a Schwarz method
involving subproblems of the form:

] [ Z ] = ul Au+ 2p" Bu = uT Au > 0. (11.2)

* * * * * *

* Ai BlT * Uy = Wi (11 3)
* Bi 0 * D; - Fi ’ )

* ok % * * *

after some suitable reordering of (11.1). They are:
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1 The submatrix B; may be singular, depending on the boundary con-
ditions, due to the nonuniqueness of the pressure. In such a case, F;
must have mean value zero if [1,...,1]7 spans the null space of B; (as
is often the case). This corresponds to the compatibility condition for
solvability of the subproblem.

2  When B; is singular, due to the nonuniqueness of the local pressure
solution p;, its mean value on the subregion is arbitrary and should be
suitably prescribed in order to compute a globally defined pressure py.

The first difficulty can be handled by reducing the problem to one in-
volving divergence free velocities. The second difficulty can be treated by
sequentially modifying the local pressure solutions so that they have the
same mean value with adjacent pressures on the regions of overlap. The
algorithm can now be outlined:

1  Determine a velocity u* satisfying Bu* = g. Then, the correction
4 = u — u* to the velocity satisfies: Bi = 0, and all subsequent local
subproblems will be compatible with the zero flux data.

2 Next, apply the Schwarz methods to compute the divergence free ve-
locity @ by solving local problems which have the same form as (11.1)
and which involves local velocities and pressures.

3  Finally, determine a global pressure using the local pressures deter-
mined in Step 2.

We refer the reader to Ewing and Wang (1991) and Mathew (1993a) for the
details.

For suitable choices of overlapping subregions and a coarse mesh, as in
Section 2, the convergence rates of the additive and multiplicative Schwarz
algorithms in the mixed elliptic case has been shown to be independent of
H and h, see Ewing and Wang (1991) and Mathew (1993b).

12. Other topics

In this section, we provide some references to several domain decomposition
procedures that we do not have space to discuss in any details. A good
source of references is the set of conference proceedings mentioned in the
introduction.

12.1. Biharmonic problem

For conforming finite element discretizations of the biharmonic problem
based on Hermite finite elements, the additive and multiplicative Schwarz
algorithms as well as the multilevel Schwarz algorithms have been devel-
oped with optimal convergence rates, see Zhang (1991; 1992a,c). See also
Scapini (1990). Nonoverlapping domain decomposition algorithms based on
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Hermite elements are discussed in Sun and Zou (1991), Hoffmann and Zou
(1992), and Scapini (1991).

Algorithms for finite difference discretizations of the biharmonic equa-
tion (such as the 13-point stencil) pose additional difficulties. Indeed, if a
nonoverlapping decomposition is used for such discretizations, the interface
must consist of two lines in order to decouple the local subproblems. This
requires modifications in the usual construction of interface preconditioners
for the Schur complement system. We refer the reader to Tsui (1991) and
Chan, Weinan and Sun (1991b). Thus far, to the knowledge of the authors,
the Schwarz algorithms have not been studied in the case of finite difference
discretizations of the biharmonic problem.

12.2. Spectral, spectral element and p version finite elements

For a general discussion on domain decomposition for spectral methods, we
refer the reader to Canuto et al. (1988), and for a discussion on spectral
element methods to Bernardi, Maday and Patera (1989), Maday and Patera
(1989), Bernardi, Debit and Maday (1989), Bernardi and Maday (1992) and
Fischer and Rgnquist (1993).

The Schwarz algorithm for spectral methods was proposed in Morchoisne
(1984), Canuto and Funaro (1988). More recently, Dirichlet—-Neumann-type
domain decomposition algorithms were proposed by Funaro, Quarteroni and
Zanolli (1988). For boundary layer and elliptic-hyperbolic problems, spec-
tral methods are described in Gastaldi et al. (1990). Applications and tech-
niques of pseudospectral domain decomposition methods in fluid dynamics
are described by Phillips (1992).

The earliest domain decomposition algorithm for p version finite elements
was proposed by Babuska, Craig, Mandel and Pitkdranta (1991), in two di-
mensions. Since then, algorithms similar to the Neumann—Neumann, wire-
basket and Schwarz methods have been developed for p version finite ele-
ments having almost optimal convergence rates (polylogarithmic growth in
p). We refer the reader to Mandel (1989; 1990), for Neumann—-Neumann and
wirebasket-type algorithms, and to Pavarino (1992, 1993a,b) and Pavarino
and Widlund (1993) for Schwarz, local refinement and wirebasket type al-
gorithms for p version finite elements.

12.3. Indefinite Helmholtz problems
The solution of the indefinite Helmholtz problem
—Au—ku=f

is a difficult problem for large k£ (by domain decomposition or other meth-
ods). For a discussion of Schwarz algorithms for solving indefinite prob-
lems, we refer the reader to Cai and Widlund (1992); the convergence rate
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depends on the size of the coarse grid used. Nonoverlapping domain de-
composition algorithms were recently proposed by Despres (1991), and by
Ernst and Golub (1992) (for the complex Helmholtz equation). Alternative
approaches based on fictitious domains are described in Proskurowski and
Vassilevski (1992) and Atamian et al. (1991).

12.4. Nonconforming finite elements

Domain decomposition algorithms (cf Neumann—Neumann and Schwarz)
have been developed for solving nonconforming finite element discretiza-
tions of elliptic problems, such as the Crouzeix—-Raviart elements and dual
mixed finite element discretizations, see Arnold and Brezzi (1985). Sarkis
(1993) proposed several extensions of the Neumann-Neumann algorithm to
the nonconforming case. In the context of dual formulations, related algo-
rithms were independently proposed by Cowsar et al. (1993). Versions of the
Schwarz algorithm were proposed by Cowsar (1993) and Meddahi (1993).

Acknowledgements The authors wish to thank Olof Widlund for many
helpful discussions on various topics presented in this article. We have
greatly benefitted from comments and helpful suggestions on an earlier draft
of this article by Patrick Ciarlet, Max Dryja, Patrick Le Tallec, Barry Smith,
Olof Widlund, Jinchao Xu and Jun Zou. Our sincere thanks to all of them.

REFERENCES

V.I. Agoshkov (1988), ‘Poincaré-Steklov operators and domain decomposition
methods in finite dimensional spaces’, in First Int. Symp. Domain Decompo-
sition Methods for Partial Differential Equations (R. Glowinski, G.H. Golub,
G.A. Meurant and J. Périaux, eds), SIAM (Philadelphia, PA).

V.I. Agoshkov and V.I. Lebedev (1985), ‘The Poincaré-Steklov operators and the
domain decomposition methods in variational problems’, in Computational
Processes and Systems Nauka (Moscow) 173-227. In Russian.

D.N. Arnold and F. Brezzi (1985), ‘Mixed and nonconforming finite element meth-
ods: Implementation, post processing and error estimates’, Math. Model. Nu-
mer. Anal. 19, 7-32.

S.F. Ashby, P.E. Saylor and J.S. Scroggs (1992), ‘Physically motivated domain
decomposition preconditioners’, in Proc. Second Copper Mountain Conf. on
Iterative Methods, Vol. 1, Comput. Math. Group, University of Colorado at
Denver.

G.P. Astrakhantsev (1978), ‘Method of fictitious domains for a second-order ellip-
tic equation with natural boundary conditions’, USSR Comput. Math. Math.
Phys. 18, 114-121.

C. Atamian, Q.V. Dinh, R. Glowinski, J. He and J. Périaux (1991), ‘Control ap-
proach to fictitious-domain methods application to fluid dynamics and electro-
magnetics’, in Fourth Int. Symp. Domain Decomposition Methods for Par-
tial Differential Equations (R. Glowinski, Y.A. Kuznetsov, G.A. Meurant,
J. Périaux and O. Widlund, eds), SIAM (Philadelphia, PA).



DOMAIN DECOMPOSITION SURVEY 131

O. Axelsson and P. Vassilevski (1990), ‘Algebraic multilevel preconditioning meth-
ods, IT', SIAM J. Numer. Anal. 27, 1569-1590.

I. Babuska (1957), ‘Uber Schwarzsche Algorithmen in partielle Differentialgleichun-
gen der mathematischen Physik’, ZAMM 37(7/8), 243-245.

I. Babuska, A. Craig, J. Mandel and J. Pitkdranta (1991), ‘Efficient preconditioning
for the p-version finite element method in two dimensions’, SIAM J. Numer.
Anal. 28(3), 624-661.

R.E. Bank, T.F. Dupont and H. Yserentant (1988), ‘The hierarchical basis multigrid
method’, Numer. Math. 52, 427-458.

M. Berger and S. Bokhari (1987), ‘A partitioning strategy for nonuniform problems
on multiprocessors’, IEEE Trans. Comput. 36, 570-580.

C. Bernardi and Y. Maday (1992), ‘Approximations spectral de problémes aux lim-
ites elliptiques’, in Mathematiques et Applications, Vol. 10, Springer (Paris).

C. Bernardi, Y. Maday and A. Patera (1989), ‘A new nonconforming approach to
domain decomposition: the mortar element method’, Nonlinear Partial Dif-
ferential Equations and their Applications (H. Brezis and J.L. Lions, eds),
Pitman (London).

C. Bernardi, N. Debit and Y. Maday (1990), ‘Coupling finite element and spectral
methods’, Math. Comput. 54, 21-39.

P.E. Bjgrstad and M. Skogen (1992), ‘Domain decomposition algorithms of Schwarz
type, designed for massively parallel computers’, Fifth Int. Symp. Domain
Decomposition Methods for Partial Differential Equations (T.F. Chan, D.E.
Keyes, G.A. Meurant, J.S. Scroggs and R.G. Voigt, eds), SIAM (Philadelphia,
PA).

P.E. Bjgrstad and O.B. Widlund (1984), ‘Solving elliptic problems on regions par-
titioned into substructures’, Elliptic Problem Solvers II (G. Birkhoff and A.
Schoenstadt, eds), Academic (London), 245-256.

P.E. Bjerstad and O.B. Widlund (1986), ‘Iterative methods for the solution of
elliptic problems on regions partitioned into substructures’, SIAM J. Numer.
Anal. 23(6), 1093-1120.

P.E. Bjorstad and O.B. Widlund (1989), ‘To overlap or not to overlap: A note on
a domain decomposition method for elliptic problems’, SIAM J. Sci. Stat.
Comput. 10(5), 1053-1061. .

C. Borgers (1989), ‘The Neumann-Dirichlet domain decomposition method with
inexact solvers on the subdomains’, Numer. Math. 55, 123-136.

C. Borgers and O.B. Widlund (1990), ‘On finite element domain imbedding meth-
ods’, SIAM J. Numer. Anal. 27(4), 963-978.

F. Bornemann and H. Yserentant (1993), ‘A basic norm equivalence for the theory
of multilevel methods’, Num. Math. 64, 455-476.

J.-F. Bourgat, R. Glowinski, P. Le Tallec and M. Vidrascu (1989), ‘Variational
formulation and algorithm for trace operator in domain decomposition calcu-
lations’, in Second Int. Conf. on Domain Decomposition Methods (T. Chan,
R. Glowinski, J. Périaux and O. Widlund, eds), STAM (Philadelphia, PA).

J.H. Bramble and J.E. Pasciak (1988), ‘A preconditioning technique for indefi-
nite systems resulting from mixed approximations of elliptic problems’, Math.
Comput. 50, 1-18.



132 T.F. CHAN AND T.P. MATHEW

J.H. Bramble and J. Xu (1991), ‘Some estimates for a weighted L? projection’,
Math. Comput. 56, 463-476.

J.H. Bramble, R.E. Ewing, J.E. Pasciak and A.H. Schatz (1988), ‘A preconditioning
technique for the efficient solution of problems with local grid refinement’,
Comput. Meth. Appl. Mech. Engrg 67, 149-159.

J.H. Bramble, R.E. Ewing, R.R. Parashkevov and J.E. Pasciak (1992), ‘Domain
decomposition methods for problems with partial refinement’, SIAM J. Sci.
Comput. 13(1), 397-410.

J.H. Bramble, J.E. Pasciak and A.H. Schatz (1986a), ‘The construction of precondi-
tioners for elliptic problems by substructuring, I', Math. Comput. 47, 103-134.

J.H. Bramble, J.E. Pasciak and A.H. Schatz (1986b), ‘An iterative method for
elliptic problems on regions partitioned into substructures’, Math. Comput.
46(173), 361-369.

J.H. Bramble, J.E. Pasciak and A.H. Schatz (1989), ‘The construction of precondi-
tioners for elliptic problems by substructuring, IV’, Math. Comput. 53, 1-24.

J.H. Bramble, J.E. Pasciak and J. Xu (1990), ‘Parallel multilevel preconditioners’,
Math. Comput. 55, 1-22.

J.H. Bramble, J.E. Pasciak, J. Wang and J. Xu (1991), ‘Convergence estimates for
product iterative methods with applications to domain decomposition’, Math.
Comput. 57(195), 1-21.

S.C. Brenner (1993), ‘Two-level additive Schwarz preconditioners for non-
conforming finite element methods’, in Proc. Seventh Int. Symp. on Domain
Decomposition Methods for Partial Differential Equations, to appear.

F. Brezzi and M. Fortin (1991), Mized and Hybrid Finite Element Methods, Springer
(Berlin).

B.L. Buzbee, F. Dorr, J. George and G. Golub (1971), ‘The direct solution of
the discrete poisson equation on irregular regions’, SIAM J. Numer. Anal.
11, 722-736.

X.-C. Cai (1991), ‘Additive Schwarz algorithms for parabolic convection—-diffusion
equations’, Numer. Math. 60(1), 41-61.

X.-C. Cai (1993), ‘Multiplicative Schwarz methods for parabolic problems’, SIAM
J. Sci. Comput., to appear.

X.-C. Cai and O. Widlund (1992), ‘Domain decomposition algorithms for indefinite
elliptic problems’, SIAM J. Sci. Comput. 13(1), 243-258.

X.-C. Cai and O. Widlund (1993), ‘Multiplicative Schwarz algorithms for some
nonsymmetric and indefinite problems’, SIAM J. Numer. Anal. 30(4), 936-
952.

X.-C. Cai, W.D. Gropp and D.E. Keyes (1992), ‘A comparison of some domain
decomposition algorithms for nonsymmetric elliptic problems’, in Fifth Int.
Symp. on Domain Decomposition Methods for Partial Differential Equations
(T.F. Chan, D.E. Keyes, G.A. Meurant, J.S. Scroggs and R.G. Voigt, eds),
SIAM (Philadelphia, PA).

C. Canuto and D. Funaro (1988), ‘The Schwarz algorithm for spectral methods’,
SIAM J. Numer. Anal. 25(1), 24-40.

C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang (1988), Spectral Methods
in Fluid Dynamics, Springer (Berlin).



TF.

T.F.

TF.

T.F.

T.F.

T.F.

T.F.

T.F.

T.F.

T.F.

T.F.

T.F.

T.F.

T.F.

DOMAIN DECOMPOSITION SURVEY 133

Chan (1987), ‘Analysis of preconditioners for domain decomposition’, SIAM
J. Numer. Anal. 24(2), 382-390.

Chan and J. Shao (1993), ‘Optimal coarse grid size in domain decomposition’,
Technical Report 93-24, UCLA CAM Report, Los Angeles, CA 90024-1555.
Chan and D. Goovaerts (1992), ‘On the relationship between overlapping and
nonoverlapping domain decomposition methods’, SIAM J. Matriz Anal. Appl.
13(2), 663.

Chan and T.Y. Hou (1991), ‘Eigendecompositions of domain decomposition
interface operators for constant coefficient elliptic problems’, SIAM J. Sci.
Comput. 12(6), 1471-1479.

Chan and D.F. Keyes (1990), ‘Interface preconditioning for domain decom-
posed convection diffusion operators’, in Third Int. Symp. on Domain Decom-
position Methods for Partial Differential Equations (T. Chan, R. Glowinski,
J. Périaux and O. Widlund, eds), SIAM (Philadelphia, PA).

Chan and T.P. Mathew (1992), ‘The interface probing technique in domain
decomposition’, STAM J. Matriz Anal. Appl. 13(1), 212-238.

Chan and T. Mathew (1993), ‘Domain decomposition preconditioners for con-
vection diffusion problems’, in Domain Decomposition Methods for Partial
Differential Equations (A. Quarteroni, ed.), American Mathematical Society
(Providence, RI), to appear.

Chan and D.C. Resasco (1985), ‘A survey of preconditioners for domain de-
composition’, Technical Report /DCS/RR-414, Yale University.

Chan and D.C. Resasco (1987), ‘Analysis of domain decomposition precon-
ditioners on irregular regions’, in Advances in Computer Methods for Par-
tial Differential Equations — VI (R. Vichnevetsky and R. Stepleman, eds),
IMACS, 317-322.

Chan, T.Y. Hou and P.L. Lions (1991a), ‘Geometry related convergence results
for domain decomposition algorithms’, SIAM J. Numer. Anal. 28(2), 378.
Chan, E. Weinan and J. Sun (1991b), ‘Domain decomposition interface precon-
ditioners for fourth order elliptic problems’, Appl. Numer. Math. 8, 317-331.
Chan, D.E. Keyes, G.A. Meurant, J.S. Scroggs and R.G. Voigt, eds (1992a),
Fifth Conf. on Domain Decomposition Methods for Partial Differential Equa-
tions, SIAM (Philadelphia, PA).

Chan, T.P. Mathew and J.-P. Shao (1992b), ‘Efficient variants of the ver-
tex space domain decomposition algorithm’, Technical Report CAM 92-07,
Department of Mathematics, UCLA, to appear in STAM J. Sci. Comput.
Chan, R. Glowinski, J. Périaux and O. Widlund, eds (1989}, Second Int. Conf.
on Domain Decomposition Methods, SIAM (Philadelphia, PA).

T. Chan, R. Glowinski, J. Périaux and O. Widlund, eds (1990), Third Int. Symp.

on Domain Decomposition Methods for Partial Differential Equations, SIAM
(Philadelphia, PA).

R.C.Y. Chin, G.W. Hedstrom, J.R. McGraw and F.A. Howes (1986), ‘Parallel com-

putation of multiple scale problems’, in New Computing Environments: Par-
allel, Vector and Systolic (A. Wouk, ed.) SIAM (Philadelphia, PA).

R. Courant and D. Hilbert (1962), Methods of Mathematical Physics, Vol. 2, Inter-

science (New York).



134 T.F. CHAN AND T.P. MATHEW

L.C. Cowsar (1993), ‘Dual variable Schwarz methods for mixed finite elements’,
Technical Report TR93-09, Department of Mathematical Sciences, Rice Uni-
versity.

L.C. Cowsar and M.F. Wheeler (1991), ‘Parallel domain decomposition method for
mixed finite elements for elliptic partial differential equations’, in Fourth Int.
Symp. on Domain Decomposition Methods for Partial Differential Equations
(R. Glowinski, Y.A. Kuznetsov, G.A. Meurant, J. Périaux and O. Widlund,
eds), SIAM (Philadelphia, PA).

L.C. Cowsar, J. Mandel and M.F. Wheeler (1993), ‘Balancing domain decompo-
sition for mixed finite elements’, Technical Report TR93-08, Department of
Mathematical Sciences, Rice University.

C.N. Dawson and Q. Du (1991), ‘A domain decomposition method for parabolic
equations based on finite elements’, in Fourth Int. Symp. on Domain De-
composition Methods for Partial Differential Equations (R. Glowinski, Y.A.
Kuznetsov G.A. Meurant, J. Périaux and O. Widlund, eds), SIAM (Philadel-
phia, PA).

C. Dawson, Q. Du and T.F. Dupont, (1991), ‘A finite difference domain decompo-
sition algorithm for numerical solution of the heat equation’, Math. Comput.
57, 195.

Y.-H. De Roeck (1989), ‘A local preconditioner in a domain-decomposed method’,
Technical Report TR89/10, Centre Européen de Recherche et de Formation
Avancée en Calcul Scientifique, Toulouse, France.

Y.-H. De Roeck and P. Le Tallec (1991), ‘Analysis and test of a local domain
decomposition preconditioner’, in Fourth Int. Symp. on Domain Decomposi-
tion Methods for Partial Differential Equations (R. Glowinski, Y. Kuznetsov,
G. Meurant, J. Périaux and O. Widlund, eds), SIAM (Philadelphia, PA).

B. Despres (1991), ‘Methodes de decomposition de domaines pour les problemes de
propagation d’ondes en regime harmoniques’, PhD thesis, University of Paris
IX, Dauphine.

Q. Dinh, R. Glowinski and J. Périaux (1984), ‘Solving elliptic problems by domain
decomposition methods with applications’, in FElliptic Problem Solvers II
(G. Birkhoff and A. Schoenstadt, eds), Academic (New York), 395-426.

M. Dryja (1982), ‘A capacitance matrix method for Dirichlet problem on polygon
region’, Numer. Math. 39, 51-64.

M. Dryja (1984), ‘A finite element-capacitance method for elliptic problems on
regions partitioned into subregions’, Numer. Math. 44, 153-168.

M. Dryja (1988), ‘A method of domain decomposition for 3-D finite element prob-
lems’, in First Int. Symp. on Domain Decomposition Methods for Partial Dif-
ferential Equations (R. Glowinski, G.H. Golub, G.A. Meurant and J. Périaux,
eds) SIAM (Philadelphia, PA).

M. Dryja (1989), ‘An additive Schwarz algorithm for two- and three-dimensional
finite element elliptic problems’, in Second Int. Conf. on Domain Decom-
position Methods (T. Chan, R. Glowinski, J. Périaux and O. Widlund, eds),
SIAM (Philadelphia, PA).

M. Dryja (1991), ‘Substructuring methods for parabolic problems’, in Fourth Int.
Symp. on Domain Decomposition Methods for Partial Differential Equations



0

DOMAIN DECOMPOSITION SURVEY 135

(R. Glowinski, Y.A. Kuznetsov, G.A. Meurant, J. Périaux and O. Widlund,
eds), STAM (Philadelphia, PA).

. Dryja and O.B. Widlund (1987), ‘An additive variant of the Schwarz alternating
method for the case of many subregions’, Technical Report 339, also Ultra-
computer Note 131, Department of Computer Science, Courant Institute.

. Dryja and O.B. Widlund (1989a), ‘On the optimality of an additive iterative
refinement method’, in Proc. Fourth Copper Mountain Conf. on Multigrid
Methods, SIAM (Philadelphia, PA) 161-170.

. Dryja and O.B. Widlund (1989b), ‘Some domain decomposition algorithms for
elliptic problems’, in lterative Methods for Large Linear Systems (L. Hayes
and D. Kincaid, eds), Academic (San Diego, CA), 273-291.

. Dryja and O.B. Widlund (1990), ‘Towards a unified theory of domain decomposi-
tion algorithms for elliptic problems’, in Third Int. Symp. on Domain Decom-
position Methods for Partial Differential Equations (T. Chan, R. Glowinski,
J. Périaux and O. Widlund, eds), SIAM (Philadelphia, PA).

. Dryja and O.B. Widlund (1992a), ‘Additive Schwarz methods for elliptic finite
element problems in three dimensions’, in Fifth Conf. on Domain Decom-
position Methods for Partial Differential Equations (T.F. Chan, D.E. Keyes,
G.A. Meurant, J.S. Scroggs and R.G. Voigt, eds), SIAM (Philadelphia, PA).

. Dryja and O.B. Widlund (1992b), ‘Domain decomposition algorithms with small
overlap’, Technical Report 606, Department of Computer Science, Courant
Institute, to appear in SIAM J. Sci. Comput.

. Dryja and O.B. Widlund (1993a), ‘Schwarz methods of Neumann-Neumann
type for three-dimensional elliptic finite element problems’, Technical Report
626, Department of Computer Science, Courant Institute.

. Dryja and O.B. Widlund (1993b), ‘Some recent results on Schwarz type domain
decomposition algorithms’, in Sizth Conf. on Domain Decomposition Methods
for Partial Differential Equations {A. Quarteroni, ed.), American Mathemat-
ical Society (Providence, RI), to appear. Technical Report 615, Department
of Computer Science, Courant Institute.

. Dryja, B.F. Smith and O.B. Widlund (1993), ‘Schwarz analysis of iterative
substructuring algorithms for elliptic problems in three dimensions’, Technical
Report 638, Department of Computer Science, Courant Institute. SIAM J.
Numer. Anal., submitted.

. Ernst and G. Golub (1992), ‘A domain decomposition approach to solving the
helmholtz equation with a radiation boundary condition’, Technical Report
92-08, Stanford University, Computer Science Department, Numerical Anal-
ysis Project, Stanford, CA 94305.

R.E. Ewing and J. Wang (1991), ‘Analysis of the Schwarz algorithm for mixed finite

element methods’, RAIRO, Math. Modell. Numer. Anal. 26(6), 739-756.

C. Farhat and M. Lesoinne (1993), ‘Automatic partitioning of unstructured meshes

for the parallel solution of problems in computational mechanics’, Int. J. Nu-
mer. Meth. Engrg 36, 745-764.

C. Farhat and F.X. Roux (1992), ‘An unconventional domain decomposition

method for an efficient parallel solution of large scale finite element systems’,
SIAM J. Sci. Comput. 13, 379-396.



136 T.F. CHAN AND T.P. MATHEW

S.A. Finogenov and Y.A. Kuznetsov (1988), ‘T'wo-stage fictitious components
method for solving the Dirichlet boundary value problem’, Sov. J. Numer.
Anal. Math. Modell. 3(4), 301-323.

P.F. Fischer and E.M. Rgnquist (1993), ‘Spectral element methods for large scale
parallel Navier-Stokes calculations’, in Second Int. Conf. on Spectral and
High Order Methods for PDE’s. Proc. ICOSAHOM 92, a conference held
in Montpellier, France, June 1992. To appear in Comput. Meth. Appl. Mech.
Engrg.

M. Fortin and R. Aboulaich (1988), ‘Schwarz’s decomposition method for incom-
pressible flow problems’, in First Int. Symp. on Domain Decomposition Meth-
ods for Partial Differential Equations (R. Glowinski, G.H. Golub, G.A. Meu-
rant and J. Périaux, eds), SIAM (Philadelphia, PA).

G. Fox (1988), ‘A review of automatic load balancing and decomposition methods
for the hypercube’, in Numerical Algorithms for Modern Parallel Computers
(M. Schultz, ed.), Springer (Berlin), 63-76.

R.W. Freund, G.H. Golub and N. Nachtigal (1992), ‘Iterative solution of linear
systems’, Acta Numerica, Cambridge University Press (Cambridge), 57-100.

D. Funaro, A. Quarteroni and P. Zanolli (1988), ‘An iterative procedure with inter-
face relaxation for domain decomposition methods’, SIAM J. Numer. Anal
25, 1213-1236.

M. Garbey (1992), ‘Domain decomposition to solve layers and singular perturbation
problems’, in Fifth Conf. on Domain Decomposition Methods for Partial
Differential Equations (T.F. Chan, D.E. Keyes, G.A. Meurant, J.S. Scroggs
and R.G. Voigt, eds), SIAM (Philadelphia, PA).

F. Gastaldi, A. Quarteroni and G. Sacchi-Landriani (1990), ‘On the coupling of two-
dimensional hyperbolic and elliptic equations: analytical and numerical ap-
proach’, in Domain Decomposition Methods for Partial Differential Equations
(T. Chan, R. Glowinski, J. Périaux and O. Widlund, eds), SIAM (Philadel-
phia, PA) 23-63.

V. Girault and P.-A. Raviart (1986), Finite Element Approzimation of the Navier-
Stokes Equations: Theory and Algorithms, Springer (Berlin).

R. Glowinski and M.F. Wheeler (1988), ‘Domain decomposition and mixed finite
element methods for elliptic problems’, in First Int. Symp. on Domain De-
composition Methods for Partial Differential Equations (R. Glowinski, G.H.
Golub, G.A. Meurant and J. Périaux, eds), SIAM (Philadelphia, PA).

R. Glowinski, G.H. Golub, G.A. Meurant and J. Périaux, eds (1988), Proc. First Int.
Symp. on Domain Decomposition Methods for Partial Differential Equations,
SIAM (Philadelphia, PA).

R. Glowinski, W. Kinton and M.F. Wheeler (1990a), ‘Acceleration of domain de-
composition algorithms for mixed finite elements by multi-level methods’, in
Third Int. Symp. on Domain Decomposition Methods for Partial Differential
Equations (T. Chan, R. Glowinski, J. Périaux and O. Widlund, eds), SIAM
(Philadelphia, PA).

R. Glowinski, Y.A. Kuznetsov, G.A. Meurant, J. Périaux and O. Widlund, eds
(1991), Fourth Int. Symp. on Domain Decomposition Methods for Partial Dif-
ferential Equations, SIAM (Philadelphia, PA).



DOMAIN DECOMPOSITION SURVEY 137

R. Glowinski, J. Périaux and G. Terrasson (1990b), ‘On the coupling of viscous and
inviscid models for compressible fluid flows via domain decomposition’, in
Domain Decomposition Methods for Partial Differential Equations (T. Chan,
R. Glowinski, J. Périaux and O. Widlund, eds), SIAM (Philadelphia, PA).

G. Golub and D. Mayers (1984), ‘The use of preconditioning over irregular regions’,
in Computing Methods in Applied Sciences and Engineering, VI (R. Glowinski
and J.L. Lions, eds), North-Holland (Amsterdam, New York, Oxford) 3-14.

D. Goovaerts (1989), ‘Domain decomposition methods for elliptic partial differential
equations’, PhD thesis, Department of Computer Science, Catholic University
of Leuven.

D. Goovaerts, T. Chan and R. Piessens (1991), ‘The eigenvalue spectrum of domain
decomposed preconditioners’, Appl. Numer. Math. 8, 389-410.

M. Griebel (1991), ‘Multilevel algorithms considered as iterative methods on indef-
inite systems’, Inst. fiir Informatik, Tech. Univ. Munchen, SFB 342/29/91A.

M. Griebel and P. Oswald (1993), ‘Remarks on the abstract theory of additive
and multiplicative Schwarz algorithms’, Inst. fiir Informatik, Tech. Univ.
Munchen, SFB 342/6/93A.

W.D. Gropp (1992), ‘Parallel computing and domain decomposition’, in Fifth Conf.
on Domain Decomposition Methods for Partial Differential Equations (T.F.
Chan, D.E. Keyes, G.A. Meurant, J.S. Scroggs and R.G. Voigt, eds), SIAM
(Philadelphia, PA).

W. Gropp and D. Keyes (1993), ‘Domain decomposition as a mechanism for using
asymptotic methods’, in Asymptotic and Numerical Methods for Partial Dif-
ferential Equations with Critical Parameters (H. Kaper and M. Garbey, eds),
Vol. 384, NATO ASI Series C, 93-106.

W. Gropp and B. F. Smith (1992), ‘Experiences with domain decomposition in
three dimensions: overlapping Schwarz methods’, Mathematics and Computer
Science Division, Argonne National Laboratory, to appear in Proc. Sizth Int.
Symyp. on Domain Decomposition Methods.

W. Hackbusch (1993), Iterative Methods for Large Sparse Linear Systems, Springer
(Heidelberg).

G.W. Hedstrom and F.A. Howes (1990), ‘Domain decomposition for a boundary
value problem with a shock layer’, in Third Int. Symp. on Domain Decom-
position Methods for Partial Differential Equations (T.F. Chan, R.Glowinski,
J. Périaux and O. Widlund, eds), SIAM (Philadelphia, PA).

F. D’Hennezel (1992), ‘Domain decomposition method with non-symmetric inter-
face operator’, Fifth Conf. on Domain Decomposition Methods for Partial
Differential Equations (Tony F. Chan, David E. Keyes, Gérard A. Meurant,
Jeffrey S. Scroggs and Robert G. Voigt, eds), STAM (Philadelphia, PA).

K.-H. Hoffmann and J. Zou (1992), ‘Solution of biharmonic problems by the do-
main decomposition method’, Technical Report No. 387, DFG-SPP, Technical
University of Munich.

Kang, L. S. (1987), Parallel Algorithms and Domain Decomposition, Wuhan Uni-
versity Press (China). In Chinese.

B. Kernighan and S. Lin (1970), ‘An efficient heuristic procedure for partitioning
graphs’, Bell Systems Tech. J. 29, 291-307.



138 T.F. CHAN AND T.P. MATHEW

D.E. Keyes and W.D. Gropp (1987), ‘A comparison of domain decomposition tech-
niques for elliptic partial differential equations and their parallel implementa-
tion’, SIAM J. Sci. Comput. 8(2), s166-s202.

D.E. Keyes and W.D. Gropp (1989), ‘Domain decomposition with local mesh re-
finement’, Technical Report YALEU/DCS/RR-726, Yale University.

G. Kron (1953), ‘A set of principles to interconnect the solutions of physical sys-
tems’, J. Appl. Phys. 24(8), 965.

Y.A. Kuznetsov (1988), ‘New algorithms for approximate realization of implicit
difference schemes’, Sov. J. Numer. Anal. Math. Modell. 3, 99-114.

Y.A. Kuznetsov (1990), ‘Domain decomposition methods for unsteady convection—
diffusion problems’, in IXth Int. Conf. on Computing Methods in Applied Sci-
ence and Engineering (R. Glowinski and J.L. Lions, eds), INRIA (Paris) 327-

344.
Y.A. Kuznetsov (1991), ‘Overlapping domain decomposition methods for fe-
problems with elliptic singular perturbed operators’, in Fourth Int.

Symp. on Domain Decomposition Methods for Partial Differential Equations
(R. Glowinski, Y.A. Kuznetsov, G.A. Meurant, J. Périaux and O. Widlund,
eds), SIAM (Philadelphia, PA).

Yu. M. Laevsky (1992), ‘Direct domain decomposition method for solving parabolic
equations’, Preprint no. 940, Novosibirsk, Computing Center Siberian Branch
Academy of Sciences. In Russian.

Yu. M. Laevsky (1993), ‘On the domain decomposition method for parabolic prob-
lems’, Bull. Novosibirsk Comput. Center 1, 41-62.

P. Le Tallec (1994), ‘Domain decomposition methods in computational mechanics’,
J. Comput. Mech. Adv., to appear.

P. Le Tallec, Y.-H. De Roeck and M. Vidrascu (1991), ‘Domain-decomposition
methods for large linearly elliptic three-dimensional problems’, J. Comput.
Appl. Math. 34.

V.I. Lebedev (1986), Composition Methods, USSR Academy of Sciences, Moscow.
In Russian.

PL. Lions (1988), ‘On the Schwarz alternating method. 1., in First Int.
Symp. on Domain Decomposition Methods for Partial Differential Equa-
tions (R. Glowinski, G.H. Golub, G.A. Meurant and J. Périaux, eds), SIAM
(Philadelphia, PA).

P.L. Lions (1989), ‘On the Schwarz alternating method. IT’, in Second Int. Conf.
on Domain Decomposition Methods (T. Chan, R. Glowinski, J. Périaux and
O. Widlund, eds), SIAM (Philadelphia, PA).

J.-L. Lions and E. Magenes (1972), Nonhomogeneous Boundary Value Problems
and Applications, Vol. I, Springer (New York, Heidelberg, Berlin).

Lu Tao, T. Shih and C. Liem (1992), Domain Decomposition Methods: New Nu-
merical Techniques for Solving PDE | Science Publishers (Beijing, China).

Y. Maday and A.T. Patera (1989}, ‘Spectral element methods for the Navier—Stokes
equations’, in State of the Art Surveys in Computational Mechanics (A.K.
Noor and J.T. Oden, eds), ASME (New York).

J. Mandel (1989a), ‘Efficient domain decomposition preconditioning for the p-
version finite element method in three dimensions’, Technical Report, Com-
putational Mathematics Group, University of Colorado at Denver.



DOMAIN DECOMPOSITION SURVEY 139

J. Mandel (1989b), ‘Two-level domain decomposition preconditioning for the p-
version finite element version in three dimensions’, Int. J. Numer. Meth. En-
grg, 29, 1095-1108.

J. Mandel (1990), ‘Hierarchical preconditioning and partial orthogonalization for
the p-version finite element method’, in Third Int. Symp. on Domain Decom-
position Methods for Partial Differential Equations (T.F. Chan, R. Glowinski,
J. Périaux and O. Widlund, eds), STAM (Philadelphia, PA).

J. Mandel (1992), ‘Balancing domain decomposition’, Commun. Numer. Meth. En-
grg 9, 233-241.

J. Mandel and M. Brezina (1992), ‘Balancing domain decomposition: Theory and
computations in two and three dimensions’, Technical Report, Computational
Mathematics Group, University of Colorado at Denver.

J. Mandel and S. McCormick (1989), ‘Iterative solution of elliptic equations with
refinement: The model multi-level case’, in Second Int. Conf. on Domain
Decomposition Methods (T. Chan, R. Glowinski, J. Périaux and O. Widlund,
eds), SIAM (Philadelphia, PA).

G.I. Marchuk, Y.A. Kuznetsov and A.M. Matsokin (1986), ‘Fictitious domain and
domain decomposition methods’, Sov. J. Numer. Anal. Math. Modell. 1, 3-61.

L.D. Marini and A. Quarteroni (1989), ‘A relaxation procedure for domain decom-
position methods using finite elements’, Numer. Math. 56, 575-598.

T.P. Mathew (1989), ‘Domain decomposition and iterative refinement methods for
mixed finite element discretisations of elliptic problems’, PhD thesis, Courant
Institute of Mathematical Sciences. Technical Report 463, Department of
Computer Science, Courant Institute.

T.P. Mathew (1993a), ‘Schwarz alternating and iterative refinement methods for
mixed formulations of elliptic problems, part I: Algorithms and numerical
results’, Num. Math. 65(4), 445-468.

T.P. Mathew (1993b), ‘Schwarz alternating and iterative refinement methods
for mixed formulations of elliptic problems, part II: Theory’, Num. Math.
65(4), 469-492.

A M. Matsokin and S.V. Nepomnyaschikh (1985), ‘A Schwarz alternating method
in a subspace’, Sov. Math. 29(10), 78-84.

S. McCormick (1984), ‘Fast adaptive composite grid (FAC) methods’, in Defect
Correction Methods: Theory and Applications (K. Béhmer and H.J. Stetter,
eds), Computing Supplement 5, Springer (Wien), 115-121.

S.F. McCormick (1989), Multilevel Adaptive Methods for Partial Differential Equa-
tions, SIAM (Philadelphia, PA).

S. Meddahi (1993), ‘The Schwarz algorithm for a Raviart-Thomas mixed method’,
preprint, to appear.

G.A. Meurant (1991), ‘Numerical experiments with a domain decomposition
method for parabolic problems on parallel computers’, in Fourth Int.
Symp. on Domain Decomposition Methods for Partial Differential Equations
(R. Glowinski, Y.A. Kuznetsov, G.A. Meurant, J. Périaux and O. Widlund,
eds), SIAM (Philadelphia, PA).

K. Miller (1965), ‘Numerical analogs of the Schwarz alternating procedure’, Numer.
Math. 7, 91-103.



140 T.F. CHAN AND T.P. MATHEW

Y. Morchoisne (1984), ‘Inhomogeneous flow calculations by spectral methods:
Mono-domain and multi-domain techniques’, in Spectral Methods for Par-
tial Differential Equations (R.G. Voigt, D. Gottlieb and M.Y. Hussaini, eds),
SIAM-CBMS, 181-208.

D. Morgenstern (1956), ‘Begriindung des alternierenden Verfahrens durch Orthog-
onalprojektion’, ZAMM 36, 7-8.

F. Nataf and F. Rogier (1993), ‘Factorization of the advection-diffusion operator
and domain decomposition method’, in Asymptotic and Numerical Methods
for Partial Differential Equations with Critical Parameters (H. Kaper and
M. Garbey, eds), Vol. 384, NATO ASI Series C, 123-133.

J. Necas (1967), Les Méthodes Directes en Théorie des Equations Elliptiques,
Academia (Prague).

S.V. Nepomnyaschikh (1984), ‘On the application of the method of bordering
for elliptic mixed boundary value problems and on the difference norms of
W21/2(S)’. In Russian.

S.V. Nepomnyaschikh (1986), ‘Domain decomposition and Schwarz methods in a
subspace for the approximate solution of elliptic boundary value problems’,
Computing Center of the Siberian Branch of the USSR Academy of Sciences,
Novosibirsk, USSR.

D.P. O’Leary and O.B. Widlund (1979), ‘Capacitance matrix methods for the
helmholtz equation on general three-dimensional regions’, Math. Comput.
33, 849-879.

M. Ong (1989), ‘Hierarchical basis preconditioners for second-order elliptic prob-
lems in three dimensions’, Technical Report 89-3, Department of Applied
Maths, University of Washington, Seattle.

P. Oswald (1991), ‘On discrete norm estimates related to multilevel preconditioners
in the finite element method’, in Proc. Int. Conf. Theory of Functions, Varna
91, to appear.

S. Pahl (1993), ‘Domain decomposition for the Stokes problem’, Master’s thesis,
University of Witwatersrand, Johannesburg.

L.F. Pavarino (1992), Domain decomposition algorithms for the p-version finite
element method for elliptic problems, PhD thesis, Courant Institute of Math-
ematical Sciences, Department of Mathematics.

L.F. Pavarino (1993a), ‘Schwarz methods with local refinement for the p-version
finite element method’, Technical Report TR93-01, Rice University, Depart-
ment of Computational and Applied Mathematics, submitted to Numer.
Math.

L.F. Pavarino (1993b), ‘Some Schwarz algorithms for the spectral element method’,
in Sizth Conf. on Domain Decomposition Methods for Partial Differential
Equations (A. Quarteroni, ed.), American Mathematical Society (Providence,
RI), to appear. Technical Report 614, Department of Computer Science,
Courant Institute.

L.F. Pavarino and O.B. Widlund (1993), ‘Iterative substructuring methods for p-
version finite elements in three dimensions’, Technical Report, Courant Insti-
tute of Mathematical Sciences, Department of Computer Science, to appear.

T.N. Phillips (1992), ‘Pseudospectral domain decomposition techniques for the
Navier-Stokes equations’, in Fifth Int. Symp. on Domain Decomposition



DOMAIN DECOMPOSITION SURVEY 141

Methods for Partial Differential Equations (T.F. Chan, D.E. Keyes, G.A.
Meurant, J.S. Scroggs and R.G. Voigt, eds), SIAM (Philadelphia, PA).

A. Pothen, H. Simon and K. Liou (1990), ‘Partitioning sparse matrices with eigen-
vector of graphs’, STAM J. Math. Anal. Appl. 11(3), 430-452.

W. Proskurowski and P. Vassilevski (1992), ‘Preconditioning nonsymmetric and
indefinite capacitance matrix problems in domain imbedding’, Technical Re-
port, UCLA, CAM Report 92-48, University of California, Los Angeles. SIAM
J. Sci. Comput., to appear.

W. Proskurowski and P. Vassilevski (1994), ‘Preconditioning capacitance matrix
problems in domain imbedding’, SIAM J. Sci. Comput., to appear.

W. Proskurowski and O.B. Widlund (1976), ‘On the numerical solution of
helmholtz’s equation by the capacitance matrix method’, Math. Comput.
30, 433-468.

J.S. Przemieniecki (1963), ‘Matrix structural analysis of substructures’, Amer. Inst.
Aero. Astro. J. 1(1), 138-147.

A. Quarteroni (1989), ‘Domain decomposition algorithms for the Stokes equations’,
in Second Int. Conf. on Domain Decomposition Methods (T. Chan, R. Glowin-
ski, J. Périaux and O. Widlund, eds), STAM (Philadelphia, PA).

A. Quarteroni, ed. (1993), Domain Decomposition Methods in Science and Engi-
neering, American Mathematical Society (Providence, RI).

A. Quarteroni and A. Valli (1990), ‘Theory and applications of Steklov-Poincaré
operators for boundary-value problems: the heterogeneous operator case’, in
Proc. 4th Int. Conf. on Domain Decomposition Methods, Moscow (T. Chan,
R. Glowinski, J. Périaux and O. Widlund, eds), SIAM (Philadelphia, PA).

D.C. Resasco (1990), ‘Domain decomposition algorithms for elliptic partial differen-
tial equations’, PhD thesis, Department of Computer Science, Yale University.

T. Rusten (1991), ‘Iterative methods for mixed finite element systems’, University
of Oslo.

T. Rusten and R. Winther (1992), ‘A preconditioned iterative method for saddle
point problems’, SIAM J. Matriz Anal. 13(3), 887.

M. Sarkis (1993), ‘Two-level Schwarz methods for nonconforming finite elements
and discontinuous coefficients’, Technical Report 629, Department of Com-
puter Science, Courant Institute of Mathematical Sciences, New York Univer-
sity.

F. Scapini (1990), ‘The alternating Schwarz method applied to some biharmonic
variational inequalities’, Calcolo 27, 57-72.

F. Scapini (1991), ‘A decomposition method for some biharmonic problems’, J.
Comput. Math. 9, 291-300.

H.A. Schwarz (1890), Gesammelte Mathematische Abhandlungen, Vol. 2, Springer
(Berlin) 133-143. First published in Vierteljahrsschrift der Naturforschenden
Gesellschaft in Ziirich, Vol. 15, 1870, 272-286.

J.S. Scroggs (1989), ‘A parallel algorithm for nonlinear convection diffusion equa-
tions’, in Third Int. Symp. on Domain Decomposition Methods for Partial
Differential Equations, SIAM (Philadelphia, PA).

H. Simon (1991), ‘Partitioning of unstructured problems for parallel processing’,
Comput. Sys. Engrg 2(2/3), 135-148.



142 T.F. CHAN AND T.P. MATHEW

B.F. Smith (1990), ‘Domain decomposition algorithms for the partial differential
equations of linear elasticity’, PhD thesis, Courant Institute of Mathematical
Sciences. Technical Report 517, Department of Computer Science, Courant
Institute.

B.F. Smith (1991), ‘A domain decomposition algorithm for elliptic problems in
three dimensions’, Numer. Math. 60(2), 219-234.

B.F. Smith (1992), ‘An optimal domain decomposition preconditioner for the fi-
nite element solution of linear elasticity problems’, SIAM J. Sci. Comput.
13(1), 364-378.

B.F. Smith (1993), ‘A parallel implementation of an iterative substructuring algo-
rithm for problems in three dimensions’, SIAM J. Sci. Comput. 14(2), 406—
423.

B.F. Smith and O.B. Widlund (1990), ‘A domain decomposition algorithm using a
hierarchical basis’, SIAM J. Sci. Comput. 11(6), 1212-1220.

B.F. Smith, P. Bjgrstad and W.D. Gropp (1994), ‘Domain decomposition: algo-
rithms, implementations and a little theory’, to appear.

S.L. Sobolev (1936), ‘L’algorithme de Schwarz dans la théorie de lelasticité’, C. R.
(Dokl.) Acad. Sci. URSS IV((XIII) 6), 243-246.

J. Sun and J. Zou (1991), ‘Ddm preconditioner for 4th order problems by using B-
spline finite element method’, in Fourth Int. Symp. on Domain Decomposition
Methods for Partial Differential Equations (R. Glowinski, Y.A. Kuznetsov,
G.A. Meurant, J. Périaux and O. Widlund, eds), SIAM (Philadelphia, PA).

W. P. Tang (1988), ‘Schwarz splitting and template operators’, Department of
Computer Science, Stanford University.

C.H. Tong, T.F. Chan and C.C.J. Kuo (1991), ‘A domain decomposition precondi-
tioner based on a change to a multilevel nodal basis’, SIAM J. Sci. Comput.
12, 1486-1495.

W. Tsui (1991), ‘Domain decomposition of biharmonic and Navier—Stokes equa-
tions’, PhD thesis, Department of Mathematics, University of California, Los
Angeles.

J. Wang (1991), ‘Convergence analysis of Schwarz algorithms and multilevel de-
composition iterative methods: Part I, Proc. IMACS Int. Symp. on Iterative
Methods in Linear Algebra (R. Beauwens and P. De Groen, eds), (Belgium).

J. Wang (1993), ‘Convergence analysis of schwarz algorithms and multilevel decom-
position iterative methods: Part II’, STAM J. Numer. Anal. 30(4), 953-970.

M.F. Wheeler and R. Gonzalez (1984), ‘Mixed finite element methods for petroleum
reservoir engineering problems’, in Computing Methods in Applied Sciences
and Engineering, VI (R. Glowinski and J.L. Lions, eds), North-Holland (New
York) 639-658.

0.B. Widlund (1987), ‘An extension theorem for finite element spaces with three
applications’, in Numerical Techniques in Continuum Mechanics: Notes on
Numerical Fluid Mechanics, Vol. 16, (W. Hackbusch and K. Witsch, eds),
Friedr. Vieweg und Sohn (Braunschweig/Wiesbaden) 110-122. Proc. Second
GAMM Seminar, Kiel, January, 1986.

O.B. Widlund (1988), ‘Iterative substructuring methods: Algorithms and theory for
elliptic problems in the plane’, in First Int. Symp. on Domain Decomposition



DOMAIN DECOMPOSITION SURVEY 143

Methods for Partial Differential Equations (R. Glowinski, G.H. Golub, G.A.
Meurant and J. Périaux, eds), SIAM (Philadelphia, PA).

O.B. Widlund (1989a), ‘Iterative solution of elliptic finite element problems on
locally refined meshes’, in Finite Element Analysis in Fluids (T.J. Chung
and G.R. Karr, eds), University of Alabama in Huntsville Press (Huntsville,
Alabama), 462-467.

O.B. Widlund (1989b), ‘Optimal iterative refinement methods’, in Second Int.
Conf. on Domain Decomposition Methods (T. Chan, R. Glowinski, J. Périaux
and O. Widlund, eds), SIAM (Philadelphia, PA).

R. Williams (1991), ‘Performance of dynamic load balancing algorithms for un-
structured mesh calculations’, Concurrency 3, 457-481.

J. Xu (1989), ‘Theory of multilevel methods’, PhD thesis, Cornell University.

J. Xu (1992a), ‘Iterative methods by space decomposition and subspace correction’,
SIAM Rev. 34, 581-613.

J. Xu (1992b), ‘A new class of iterative methods for nonselfadjoint or indefinite
problems’, SIAM J. Numer. Anal. 29(2), 303-319.

J. Xu (1992c), ‘Iterative methods by SPD and small subspace solvers for nonsym-
metric or indefinite problems’, Fifth Conf. on Domain Decomposition Methods
for Partial Differential Equations (T.F. Chan, D.E. Keyes, G.A. Meurant, J.S.
Scroggs and R.G. Voigt, eds) SIAM (Philadelphia, PA).

J. Xu and X.-C. Cai (1992), ‘A preconditioned GMRES method for nonsymmetric
or indefinite problems’, Math. Comput. 59, 311-319.

H. Yserentant (1986), ‘On the multi-level splitting of finite element spaces’, Numer.
Math. 49, 379-412.

X. Zhang (1991), ‘Studies in domain decomposition: Multilevel methods and the
biharmonic Dirichlet problem’, PhD thesis, Courant Institute, New York Uni-
versity.

X. Zhang (1992a), ‘Domain decomposition algorithms for the biharmonic Dirichlet
problem’, in Fifth Conf. on Domain Decomposition Methods for Partial Dif-
ferential Equations (T.F. Chan, D.E. Keyes, G.A. Meurant, J.S. Scroggs and
R.G. Voigt, eds), SIAM (Philadelphia, PA).

X. Zhang (1992b), ‘Multilevel Schwarz methods’, Num. Math. 63(4), 521-539.

X. Zhang (1992¢), ‘Multilevel Schwarz methods for the biharmonic dirichlet prob-
lem’, Technical Report CS-TR2907 (UMIACS-TR-92-60), University of Mary-
land, Department of Computer Science, submitted to SIAM J. Sci. Comput.



